Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Doctoral Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 31 - 60 of 134

Full-Text Articles in Nanoscience and Nanotechnology

Direct Patterning Of Nature-Inspired Surfaces For Biointerfacial Applications, Feyza Dundar Mar 2019

Direct Patterning Of Nature-Inspired Surfaces For Biointerfacial Applications, Feyza Dundar

Doctoral Dissertations

There are three major challenges for the design of patterned surfaces for biointerfacial applications: (i) durability of antibacterial/antifouling mechanisms, (ii) mechanical durability, and (iii) lifetime of the master mold for mass production of patterned surfaces. In this dissertation, we describe our contribution for the development of each of these challenges. The bioinspired surface, Sharklet AFTM, has been shown to reduce bacterial attachment via a biocide-free structure-property relationship effectively. Unfortunately, the effectiveness of polymer-based sharkskin surfaces is challenged over the long term by both eventual bacteria accumulation and a lack of mechanical durability. To address these common modes of …


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the …


Mass Spectrometry Analysis Of Contaminants Of Emerging Concern: Nanoparticles, Algal Toxins, And Cyanotoxins In Natural Waters And Their Potential Health Impacts, Ariel R. Donovan Jan 2019

Mass Spectrometry Analysis Of Contaminants Of Emerging Concern: Nanoparticles, Algal Toxins, And Cyanotoxins In Natural Waters And Their Potential Health Impacts, Ariel R. Donovan

Doctoral Dissertations

“The analysis of contaminants of emerging concern is critical to protecting environmental health. In the presented dissertation, two groups of contaminants of emerging concern were assessed using mass spectrometry methods: nanoparticles and algal and cyanotoxins.

Analysis of metal oxide nanoparticles in environmental matrices has been a challenging issue, as most traditional methods require complicated sample preparation methods or that can alter or destroy the nanoparticles in the system. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) methods were used to detect metal oxide nanoparticles in surface waters and their removal through drinking water treatment simulations while retaining all information regarding …


Scaleable Nanomanufacturing Of Metasurfaces Using Microsphere Photolithography, Chuang Qu Jan 2019

Scaleable Nanomanufacturing Of Metasurfaces Using Microsphere Photolithography, Chuang Qu

Doctoral Dissertations

“The cost-effective manufacturing of metasurfaces over large areas is a critical issue that limits their implementations. Microsphere photolithography (MPL) uses a scalable self-assembled microsphere array as an optical element to focus collimated light to nanoscale photonic jets in a photoresist layer. This dissertation investigates the fabrication capabilities, process control, and potential applications of MPL. First, the MPL concept is applied to the fabrication of metasurfaces with engineered IR absorption (e.g. perfect absorption with multiband/broadband and wavelength/polarization dependences). Improving the patterning of the photoresist requires a fundamental understanding the photochemical photonic jet interactions. The dissertation presents a model of the MPL …


Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai Nov 2018

Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai

Doctoral Dissertations

Recently, there has been a growing interest in flexible electronic devices as they are light, highly flexible, robust, and use less expensive substrate materials. Such devices are affected by thermal management issues that can reduce the device’s performance and reliability. Therefore, this work is focused on the study of the thermal properties of nanomaterials and the methods to address such issues. The goal is to enhance the effective thermal conductivity by adding nanomaterials to the polymer matrix or by structural modification of nanomaterials. The thermal conductivity of copper nanowire/polydimethylsiloxane and copper nanowire/polyurethane composites were measured and showed more than threefold …


Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan Nov 2018

Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan

Doctoral Dissertations

The electrical characterization on two-dimensional carbon-based graphene and nanodiamond materials was performed to improve charge transport properties for the label-free electrical biosensors. The charge transport in solution-gated graphene devices is affected by the impurities and disorders of the underlying dielectric interface and its interaction with the electrolytes. Advancement in field-effect ion sensing by introducing a dielectric isomorph, hexagonal boron nitride between graphene and silicon dioxide of a solution-gated graphene field-effect transistor was investigated. Increased transconductance due to increased charge carrier mobility is accompanied with larger ionic sensitivity. These findings define a standard to construct future graphene devices for biosensing and …


Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden Nov 2018

Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden

Doctoral Dissertations

The U.S. produces 5559.6 million metric tons of carbon dioxide annually, of which 21% is produced by industrial processes. Steam reforming, an industrial process that accounts for 95% of all hydrogen production in industry, produces 134.5 million metric tons of carbon dioxide or around 11% of the total carbon dioxide produced by industry. This carbon dioxide is then either emitted or goes through a sequestration process that accounts for 75% of the plant's operational costs. An alternative reaction to steam reforming is dry reforming, which utilizes carbon dioxide rather than emitting it and can be used in conjunction with current …


Probing Local Vacancy-Driven Resistive Switching In Metal Oxide Nanostructures, Jiaying Wang Oct 2018

Probing Local Vacancy-Driven Resistive Switching In Metal Oxide Nanostructures, Jiaying Wang

Doctoral Dissertations

Novel nonvolatile memory technologies garner intense research interest as conventional ash devices approach their physical limit. Memristors, often comprising an insulating thin film between two metal electrodes to constitute a class of two-terminal devices, enable a variety of important large data storage and data-driven computing applications. In addition to nonvolatile behavior, other features such as high scalability, low power consumption, and sub-nanosecond response times make memristors among the most attractive candidate systems. Their strength in electronic storage relies on the unique properties of the tunable variations in resistance induced from the accumulation of charged defects based on the applied bias …


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Oct 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of …


Role Of Rigidity And Flexibility Of Functional Groups Within The Interior Of Supramolecular Assemblies And Their Implications, Oyuntuya Munkhbat Mar 2018

Role Of Rigidity And Flexibility Of Functional Groups Within The Interior Of Supramolecular Assemblies And Their Implications, Oyuntuya Munkhbat

Doctoral Dissertations

Engineering of supramolecular assemblies at molecular level renders functional nanomaterials that present explicit response to certain environmental changes. Systematic structure-property correlation studies will unravel the fundamental design constraints of these functional nanomaterials that fulfill the emergent need. This dissertation will primarily focus on understanding the role of rigidity and flexibility of functional groups within amphiphilic assemblies and employing this basic concept in drug delivery and diagnostics applications. Supramolecular assemblies formed by amphiphilic dendrimers and polymers are preferred for this study as they exhibit high thermodynamic stability and structural flexibility. The role of aromatic interaction on the unimer-aggregate dynamic equilibrium was …


Materials Engineering, Switching Mechanism And Novel Applications Of Memristive Devices, Hao Jiang Mar 2018

Materials Engineering, Switching Mechanism And Novel Applications Of Memristive Devices, Hao Jiang

Doctoral Dissertations

Memristive devices have attracted tremendous interests because of their highly desirable properties such as a simple structure, low switching voltage, fast switching speed, excellent scalability, multiple conductance states and great compatibility with the Complementary Metal–Oxide–Semiconductor technology. Hence, they stand out as promising candidates for next-generation non-volatile memory and electronic synapses in artificial neural network. This thesis reports systematic studies of the memristive switching phenomena in oxide based material systems, in aspects of materials engineering, switching mechanism and novel applications. We demonstrated efficient ways of engineering device performances such as metal doping and further presented a highly reliable hafnium oxide based …


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli Nov 2017

The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli

Doctoral Dissertations

Particle dispersions are ubiquitous in our daily lives ranging from food and pharmaceutical products to inks. There has been great interest in the recent years in formulation of functional inks to fabricate myriad flexible electronic devices through high-throughput roll-to-roll technologies. The formulations often contain several functional additives or rheological modifiers that can affect the microstructure, rheology and processing. Understanding the rheology of formulations is important for tuning the formulation for optimal processing. This thesis presents investigations on the rheology of particle dispersions and their impact on roll-to-roll technologies. Shear-thickening behavior is common in particle dispersions, particularly, concentrated particulate inks. We …


Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou Nov 2017

Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou

Doctoral Dissertations

Semiconductor nanocrystal doping has stimulated broad interest for many applications including solar energy conversion, nanospintronics, and phosphors or optical labels. The study of the chemistry and physics of doped colloidal semiconductor nanocrystals has been dominated in the literature by isovalent dopants such as Mn2+ and Co2+ ions in II-VI semiconductors, in which the dopant oxidation state is the same as the cation ions. Until recently, aliovalent dopants has received much attention due to the plasmonic properties. Aliovalent is when the oxidation states of the dopant in the lattice differs from the cation ions. In the plasmonic semiconductor nanocrystals, …


Modeling Of Nanoscale Transport In Mesoporous Membranes, Ashutosh Rathi Nov 2017

Modeling Of Nanoscale Transport In Mesoporous Membranes, Ashutosh Rathi

Doctoral Dissertations

Mesoporous membranes with pore sizes in the range 2-50 nm provide an energy efficient alternative for separation of mixtures such as CO2 from stack effluents and volatile organic compounds (VOC) from air. Transport mechanisms such as capillary condensation, Knudsen diffusion and surface adsorption help in enrichment of a more condensable component based on the bulk mixture thermodynamics, surface chemistry and geometry of the mesopores. Despite the progress in synthesis techniques, design of better mesoporous materials for targeted separations is still a challenge due to the absence of clear design rules. Modeling techniques can be used to quantify the relevant …


Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena Nov 2017

Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena

Doctoral Dissertations

Solution-based crystallization of conjugated polymers offers a scalable and attractive route to develop hierarchical structures for electronic devices. The introduction of well-defined nucleation sites into metastable solutions provides a way to regulate the crystallization behavior, and therefore the morphology of the material. A crystallization method for generating metastable solutions of poly(3-hexylthiophene) (P3HT) was established. These metastable solutions allow P3HT to selectively crystallize into nanofibers (NFs) on graphene-coated surfaces. It was found that the crystallization kinetics is faster with increasing P3HT molecular weight and concentration. Through in situ atomic force microscopy, it was confirmed that NFs grow vertically in a face-on …


Guiding The Self-Assembly Of Block Copolymers In 2d And 3d With Minimal Patterning, Jaewon Choi Nov 2017

Guiding The Self-Assembly Of Block Copolymers In 2d And 3d With Minimal Patterning, Jaewon Choi

Doctoral Dissertations

Directed self-assembly (DSA) of block copolymers (BCPs) based on topographic patterns is one of the most promising strategies for overcoming resolution limitations in the current lithographic process and fabricating the next generation data storage devices. While the DSA of BCPs with deep topographic patterning has been extensively studied both experimentally and theoretically over the past two decades, less attention has been paid to the development of the DSA process using minimal topographic patterning. This dissertation focuses on understanding the effect of minimal topographic patterning on guiding the self-assembly of BCPs in 2D and 3D. We demonstrate that minimal trench patterns …


Advanced Purification And Direct-Write 3d Nanoprinting Via Focused Electron Beam Induced Deposition, Brett Bloxton Lewis Aug 2017

Advanced Purification And Direct-Write 3d Nanoprinting Via Focused Electron Beam Induced Deposition, Brett Bloxton Lewis

Doctoral Dissertations

This dissertation addresses three difficulties with focused electron beam induced deposition preventing broader application; purity, spatial control, and mechanical characterization.

Focused electron beam induced deposition (FEBID) has many advantages as a nanoscale fabrication tool. It is compatible for implementation into current lithographic techniques and has the potential to direct-write in a single step nanostructures of a high degree of complexity. FEBID is a very versatile tool capable of fabricating structures of many different compositions ranging from insulating oxides to conducting metals.

Due to the complexity of the technique and the difficulty in directly measuring many important variables, FEBID has remained …


Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis Jan 2017

Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis

Doctoral Dissertations

With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell …


Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike Jan 2017

Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike

Doctoral Dissertations

The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps.

The alumina supported catalysts were dominated by γ-alumina …


Label-Free And Aptamer-Based Surface Enhanced Raman Spectroscopy For Detection Of Food Contaminants, Shintaro Pang Nov 2016

Label-Free And Aptamer-Based Surface Enhanced Raman Spectroscopy For Detection Of Food Contaminants, Shintaro Pang

Doctoral Dissertations

The development of analytical methods to detect food contaminants is a critical step for improving food safety. Surface enhanced Raman spectroscopy (SERS) is an emerging detection technology that has the potential to rapidly, accurately and sensitively detect a wide variety of food contaminants. However, SERS detection becomes a challenge in real complex matrix, such as food, since non-specific matrix signals have the potential to drown out target associated Raman peaks. In this dissertation, we focused on the development and application of label-free, aptamer-based SERS in order to improve the accuracy and specificity of target contaminant detection in food. To accomplish …


Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar Nov 2016

Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar

Doctoral Dissertations

The idea of sequencing a DNA based on single-file translocation of the DNA through nanopores under the action of an electric field has received much attention over the past two decades due to the societal need for low cost and high-throughput sequencing. However, due to the high speed of translocation, interrogating individual bases with an acceptable signal to noise ratio as they traverse the pore has been a major problem. Experimental facts on this phenomenon are rich and the associated phenomenology is yet to be fully understood. This thesis focuses on understanding the underlying principles of polymer translocation, with an …


Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun Oct 2016

Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun

Doctoral Dissertations

Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery.

In this study, a drug delivery system was built based on halloysite …


Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson Oct 2016

Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson

Doctoral Dissertations

Accurate epileptogenic focus localization is required prior to surgical resection of brain tissue for treatment of patients with intractable temporal lobe epilepsy, a clinical need that is partially fulfilled to date through a subjective, and at times inconclusive, evaluation of the recorded electroencephalogram (EEG). Using brain connectivity analysis, patterns of causal interactions between brain regions were derived from multichannel EEG of 127 seizures in nine patients with focal, temporal lobe epilepsy (TLE). The statistically significant directed interactions in the reconstructed brain networks were estimated from three second intracranial multi-electrode EEG segments using the Generalized Partial Directed Coherence (GPDC) and validated …


Lab-On-A-Chip Nucleic-Acid Analysis Towards Point-Of-Care Applications, Varun Lingaiah Kopparthy Oct 2016

Lab-On-A-Chip Nucleic-Acid Analysis Towards Point-Of-Care Applications, Varun Lingaiah Kopparthy

Doctoral Dissertations

Recent infectious disease outbreaks, such as Ebola in 2013, highlight the need for fast and accurate diagnostic tools to combat the global spread of the disease. Detection and identification of the disease-causing viruses and bacteria at the genetic level is required for accurate diagnosis of the disease. Nucleic acid analysis systems have shown promise in identifying diseases such as HIV, anthrax, and Ebola in the past. Conventional nucleic acid analysis systems are still time consuming, and are not suitable for point-ofcare applications. Miniaturized nucleic acid systems has shown great promise for rapid analysis, but they have not been commercialized due …


Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt Aug 2016

Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt

Doctoral Dissertations

In today’s world, the demand for novel methods of energy storage is increasing rapidly, particularly with the rise of portable electronic devices, electric vehicles, and the personal consumption and storage of solar energy. While other technologies have arguably improved at a rate that is exponential in accordance with Moore’s law, battery technology has lagged behind largely due to the difficulty in devising new electric storage systems that are simultaneously high performing, inexpensive, and safe.

In order to tackle these challenges, novel Li-ion battery anodes have been developed at Oak Ridge National Laboratory that are made from lignin, a low-cost, renewable …


Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins Jul 2016

Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins

Doctoral Dissertations

Van der Waals (vdW) interactions influence a variety of mesoscale phenomena, such as surface adhesion, friction, and colloid stability, and play increasingly important roles as science seeks to design systems on increasingly smaller length scales. Using the full Lifshitz continuum formulation, this thesis investigates the effects of system materials, shapes, and configurations and presents open-source software to accurately calculate vdW interactions. In the Lifshitz formulation, the microscopic composition of a material is represented by its bulk dielectric response. Small changes in a dielectric response can result in substantial variations in the strength of vdW interactions. However, the relationship between these …


Enzyme Stabilization In Hierarchical Biocatalytic Food Packaging And Processing Materials, Dana Erin Wong Jul 2016

Enzyme Stabilization In Hierarchical Biocatalytic Food Packaging And Processing Materials, Dana Erin Wong

Doctoral Dissertations

The partnership of biocatalysts and solid support materials provides many opportunities for bioactive packaging and bioprocessing aids beneficial to the agricultural and food industries. Biocatalysis, or reactions modulated by enzymes, allows bioactive materials to assist in bringing a substrate to product. Enzymes are proteins which catalyze reactions by lowering the activation energy required to drive the production of a desired product. Enzymes are commonly utilized in food processing as catalysts with specificity in order to enhance product quality through the production of beneficial food components, and to break down undesirable components that may be harmful or may decrease product quality. …


Studies On The Electrical Transport Properties Of Carbon Nanotube Composites, Taylor Warren Tarlton Jul 2016

Studies On The Electrical Transport Properties Of Carbon Nanotube Composites, Taylor Warren Tarlton

Doctoral Dissertations

This work presents a probabilistic approach to model the electrical transport properties of carbon nanotube composite materials. A pseudo-random generation method is presented with the ability to generate 3-D samples with a variety of different configurations. Periodic boundary conditions are employed in the directions perpendicular to transport to minimize edge effects. Simulations produce values for drift velocity, carrier mobility, and conductivity in samples that account for geometrical features resembling those found in the lab. All results show an excellent agreement to the well-known power law characteristic of percolation processes, which is used to compare across simulations. The effect of sample …