Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Nanoscience and Nanotechnology

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Jan 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components and the ...


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & epitaxial ...


Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike Jan 2017

Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike

Doctoral Dissertations

The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps.

The alumina supported catalysts were dominated by ...


Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou Jan 2017

Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou

Doctoral Dissertations

Semiconductor nanocrystal doping has stimulated broad interest for many applications including solar energy conversion, nanospintronics, and phosphors or optical labels. The study of the chemistry and physics of doped colloidal semiconductor nanocrystals has been dominated in the literature by isovalent dopants such as Mn2+ and Co2+ ions in II-VI semiconductors, in which the dopant oxidation state is the same as the cation ions. Until recently, aliovalent dopants has received much attention due to the plasmonic properties. Aliovalent is when the oxidation states of the dopant in the lattice differs from the cation ions. In the plasmonic semiconductor nanocrystals ...


Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan Jan 2016

Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan

Doctoral Dissertations

"As the rapid growing of nanotechnology, the release of engineered nanoparticles (ENPs) into the environment is inevitable. After entering the real environment, ENPs tend to react with different components of the ecosystem (e.g. water, soil, air, plants) and make their characterization difficult. Analyzing ENPs in these complex matrices still remains as a grand challenge. ENPs characterization is normally the first step of risk assessment. Current analytical techniques have shown some limitations in revealing the unique characteristics of ENPs in complex matrices and reliable analytical techniques are in urgent need. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) is an ...


Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li Jan 2016

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li

Doctoral Dissertations

The major part of this dissertation discusses the engineering of the refractive index of materials using solution-processable polymer nanocomposites and their applications in building optical components and devices. Three particular polymer nanocomposites have been introduced to achieve materials with tunable refractive indices and enhanced optical properties, which can be used to manipulate the behavior of light or electromagnetic radiations. In the first system, polyhedral oligomeric silsesquioxane (POSS)/polymer nanocomposites are developed. Thin films with tunable, low refractive indicies were fabricated from the composites. The mechanical strength of these films was characterized, and their application in antireflective coatings is discussed. In ...


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are ...


The Synthesis And Characterization Of Water-Reducible Nanoscale Colloidal Unimolecular Polymer (Cup) Particles, Cynthia J. Riddles Jan 2015

The Synthesis And Characterization Of Water-Reducible Nanoscale Colloidal Unimolecular Polymer (Cup) Particles, Cynthia J. Riddles

Doctoral Dissertations

"The coatings industry has adapted to more stringent guidelines in paint formulations. Current VOC (volatile organic compound) limits placed by the federal government have pushed the industry toward the development of paint formulations which have very little to no VOC's. The development of Colloidal Unimolecular Polymer (CUP) particles is a step in the direction of providing a resin system which exists in zero VOC aqueous dispersion.

The CUP particles are a part of the polymer field of Single Chain Nano Particles (SCNP) and ranged in diameters of 3-9 nm. The research presented in this dissertation describes the synthesis and ...


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Jan 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials.

This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively with ...


Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli Jan 2015

Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli

Doctoral Dissertations

This dissertation describes the synthesis of photo-crosslinkable copolymers and their utilization for the fabrication and testing of tunable and responsive one-dimensional (1D) photonic multilayers. Photonic multilayers exhibit structural color due to the interference of incident light at layer interfaces, providing a convenient route towards optically responsive materials that do not rely on potentially light- or oxygen-sensitive chromophore-containing pigments and dyes. A fabrication technique based on sequential spin-coating and crosslinking of photo-crosslinkable polymers is used to assemble tunable and responsive photonic multilayers.

Chapter One introduces the fundamental underlying principles of 1D photonic structures and explores their importance in a variety of ...


Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph Sep 2014

Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph

Doctoral Dissertations

The ability to define and control the topography of a surface has been studied extensively due to its importance in a wide variety of applications. The control of a non-planar topography would be very valuable since a number of structures that are pervasive in artificial applications (e.g. fibers, lenses) are curved interfaces. This potential of enabling applications that incorporate non-planar geometries was the motivation for this thesis. The first study of this thesis comprises the study of patterning the circumference of micrometer sized fibers. Specifically, a unique technique was described to pattern the fiber with a periodic array of ...


Engineering Surface Functionality Of Nanoparticles For Biological Applications, Yi-Cheun Yeh Sep 2014

Engineering Surface Functionality Of Nanoparticles For Biological Applications, Yi-Cheun Yeh

Doctoral Dissertations

Engineering the surface functionality of nanomaterials is the key to investigate the interactions between nanomaterials and biomolecules for potent biological applications such as therapy, imaging and diagnostics. My research has been orientted to engineer both of the surface monolayers and core materials to fabricate surface-functionalized nanomaterials through the synergistic multidisciplinary approach that combine organic chemistry, materials science and biology. This thesis illustrates the design and synthesis of the surface-funcitonalized quantum dots (QDs) and gold nanoparticles (AuNPs) for the fundamental studies and practical applications. For QDs, A new class of cationic QDs with quaternary ammonium derivatives was synthesized to provide permanent ...


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Jun 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction.

Hydrophilic MNPs were shown to drive the self-assembly of BCPs ...


Towards Sustainable Development Of Nanomanufacturing, Sasikumar Ramdas Naidu May 2012

Towards Sustainable Development Of Nanomanufacturing, Sasikumar Ramdas Naidu

Doctoral Dissertations

"Sustainability" is a buzz word these days not just among regulatory agencies but even with corporations, as evident by the release of annual sustainability report by a large number of firms. Companies are starting to portray profit making along with corporate environmental responsibility.

Nanotechnology and nanomanufacturing which holds a lot of promise for development in a multitude of fields in science and engineering is the new kid on the block and carries a lot of apprehension due to public concern about their potential unwanted side effects that may result in the case of an untoward incident or lack of oversight ...