Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Functional Clay Nanotubes And Composites, Yafei Zhao Apr 2015

Functional Clay Nanotubes And Composites, Yafei Zhao

Doctoral Dissertations

Tubular nanomaterials and their composites have been extensively studied in recent years in the fields of physics, chemistry, biology, and biomedicine. Carbon nanotube is the most commonly studied tubular nanomaterial; however, toxicity and high cost make it less attractive in industry and thus restricts its applications. Halloysite nanotubes, which are available in abundance in the United States as well as in other countries around the world, is a low-cost, unique and versatile aluminosilicate mineral with a chemical formula of Al4Si4O10(OH)8·nH2O. Basically, the halloysite tube diameter is around 50 nm and the length varies with different locations ranging from 0.4-1.5 μm. …


Adsorption And Diffusion Of Gases In Nano-Porous Materials, Nethika Sahani Suraweera Dec 2013

Adsorption And Diffusion Of Gases In Nano-Porous Materials, Nethika Sahani Suraweera

Doctoral Dissertations

In this work, a systematic computational study directed toward developing a molecular-level understanding of gas adsorption and diffusion characteristics in nano-porous materials is presented. Two different types of porous adsorbents were studied, one crystalline and the other amorphous. Physisorption and diffusion of hydrogen in ten iso-reticular metal-organic frameworks (IRMOFs) were investigated. A set of nine adsorbents taken from a class of novel, amorphous nano-porous materials composed of spherosilicate building blocks and isolated metal sites was also studied, with attention paid to the adsorptive and diffusive behavior of hydrogen, methane, carbon dioxide and their binary mixtures. Both classes of materials were …


Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong May 2010

Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong

Doctoral Dissertations

Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have received great interest since they were first synthesized in the late 1990s. Practical applications of MOFs are continuously being discovered as a better understanding of the properties of materials adsorbed within the nanopores of MOFs emerges. One such potential application is as a component of an explosive-sensing system. Another potential application is for hydrogen storage.

This work is focused on tailoring MOFs to adsorb/desorb the explosive, RDX. Classical grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations have been performed to calculate adsorption isotherms and self-diffusivities of …