Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 421 - 450 of 2081

Full-Text Articles in Electromagnetics and Photonics

High Performance Liquid Crystal Devices For Augmented Reality And Virtual Reality, Md Javed Rouf Talukder Jan 2019

High Performance Liquid Crystal Devices For Augmented Reality And Virtual Reality, Md Javed Rouf Talukder

Electronic Theses and Dissertations

See-through augmented reality and virtual reality displays are emerging due to their widespread applications in education, engineering design, medical, retail, transportation, automotive, aerospace, gaming, and entertainment. For augmented reality and virtual reality displays, high-resolution density, high luminance, fast response time and high ambient contrast ratio are critically needed. High-resolution density helps eliminate the screen-door effect, high luminance and fast response time enable low duty ratio operation, which plays a key role for suppressing image blurs. A dimmer placed in front of AR display helps to control the incident background light, which in turn improves the image contrast. In this dissertation, …


Processing Of Advanced Infrared Materials, Daniel Mcgill Jan 2019

Processing Of Advanced Infrared Materials, Daniel Mcgill

Electronic Theses and Dissertations

Infrared transparent glassy and crystalline materials often have unique and complex processing requirements but are an important class of materials for such applications as optical windows, lenses, waveplates, polarizers and beam splitters. This thesis investigates two specific materials, one amorphous and one crystalline, that are candidates for use in the short and midwave-infrared and mid and longwave infrared, respectively. It is demonstrated that an innovative uniaxial sintering process, which uses a sacrificial pressure-transmitting medium, can be used to fully densify a 70TeO2-20WO3-10La2O3 (TWL) glass powder. The characteristics of the sintered TWL glass is compared to that of a parent glass …


Broadband Mid-Infrared Frequency Combs Generated Via Frequency Division, Qitian Ru Jan 2019

Broadband Mid-Infrared Frequency Combs Generated Via Frequency Division, Qitian Ru

Electronic Theses and Dissertations

Frequency combs have revolutionized metrology and demonstrated numerous applications in science and technology. Combs operating in the mid-infrared region could be beneficial for molecular spectroscopy for several reasons. First, numerous molecules have their spectroscopic signatures in this region. Furthermore, the atmospheric window (3-5μm and 8-14μm) is located here. Additionally, a mid-infrared frequency comb could be employed as a diagnostic tool for the many components of human breath, as well as for detection of harmful gases and contaminants in the atmosphere. In this thesis, I used synchronously pumped subharmonic optical parametric oscillators (OPOs) operating at degeneracy to produce ultra-broadband outputs near …


Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova Jan 2019

Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova

Conference Papers

Monitoring of multiple physical parameters, such as humidity, temperature, strain, concentrations of certain chemicals or gases in various environments is of great importance in many industrial applications both for minimizing adverse effects on human health as well as for maintaining production levels and quality of products. In this paper we demonstrate two different approaches to the design of multi-parametric sensors using coupled whispering gallery mode (WGM) optical fiber micro-resonators. In the first approach, a small array of micro-resonators is coupled to a single fiber taper, while in the second approach each of the micro-resonators within an array is coupled to …


Theoretical Analysis Of A Volume Holographic Lens Using Matlab, Sanjay Keshri, Kevin Murphy, Izabela Naydenova, Suzanne Martin Jan 2019

Theoretical Analysis Of A Volume Holographic Lens Using Matlab, Sanjay Keshri, Kevin Murphy, Izabela Naydenova, Suzanne Martin

Conference Papers

Volume holographic lenses have great potential for different types of applications requiring light redirection and beam shaping such as solar light collection and LED light management. For lighting applications using LEDs, it is essential to make a highly efficient optical element to be placed in front of the LED in order to decrease energy losses. For that reason, a careful theoretical analysis of the properties and operation regime of the lens must be carried out at the design stage. The characteristics of focusing Holographic Optical Elements (HOE) depend on many factors including their thickness, spatial frequency, the angular range of …


Holographic Optical Elements For Visible Light Applications In Photo-Thermo-Refractive Glass, Fedor Kompan Jan 2019

Holographic Optical Elements For Visible Light Applications In Photo-Thermo-Refractive Glass, Fedor Kompan

Electronic Theses and Dissertations

This dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation. The first method involves modification of the original PTR glass rendering it photosensitive to radiation in the visible spectral region and, thus, making possible the recording of holograms in PTR …


Imaging Through Glass-Air Anderson Localizing Optical Fiber, Jian Zhao Jan 2019

Imaging Through Glass-Air Anderson Localizing Optical Fiber, Jian Zhao

Electronic Theses and Dissertations

The fiber-optic imaging system enables imaging deeply into hollow tissue tracts or organs of biological objects in a minimally invasive way, which are inaccessible to conventional microscopy. It is the key technology to visualize biological objects in biomedical research and clinical applications. The fiber-optic imaging system should be able to deliver a high-quality image to resolve the details of cell morphology in vivo and in real time with a miniaturized imaging unit. It also has to be insensitive to environmental perturbations, such as mechanical bending or temperature variations. Besides, both coherent and incoherent light sources should be compatible with the …


Fundamental Properties Of Metallic Nanolasers, William Hayenga Jan 2019

Fundamental Properties Of Metallic Nanolasers, William Hayenga

Electronic Theses and Dissertations

The last two decades have witnessed tremendous advancements in the area of nanophotonics and plasmonics, which has helped propel the development of integrated photonic sources. Of central importance to such circuits is compact, scalable, low threshold, and efficient coherent sources that can be driven at high modulation frequencies. In this regard, metallic nanolasers offer a unique platform. Their introduction has enabled confinement of light at a subwavelength scale and the ultra-small size of the modes afforded by these structures allows for cavity enhancing effects that can help facilitate thresholdless lasing and large direct modulation bandwidths. In this report, I present …


Hybrid Integration Of Second- And Third-Order Highly Nonlinear Waveguides On Silicon Substrates, Guillermo Fernando Camacho Gonzalez Jan 2019

Hybrid Integration Of Second- And Third-Order Highly Nonlinear Waveguides On Silicon Substrates, Guillermo Fernando Camacho Gonzalez

Electronic Theses and Dissertations

In order to extend the capabilities and applications of silicon photonics, other materials and compatible technologies have been developed and integrated on silicon substrates. A particular class of integrable materials are those with high second- and third-order nonlinear optical properties. This work presents contributions made to nonlinear integrated photonics on silicon substrates, including chalcogenide waveguides for over an octave supercontinuum generation, and rib-loaded thin-film lithium niobate waveguides for highly efficient second-harmonic generation. Through the pursuit of hybrid integration of the two types of waveguides for applications such as on-chip self-referenced optical frequency combs, we have experimentally demonstrated fabrication integrability of …


Third-Order Optical Nonlinearities For Integrated Microwave Photonics Applications, Marcin Malinowski Jan 2019

Third-Order Optical Nonlinearities For Integrated Microwave Photonics Applications, Marcin Malinowski

Electronic Theses and Dissertations

The field of integrated photonics aims at compressing large and environmentally-sensitive optical systems to micron-sized circuits that can be mass-produced through existing semiconductor fabrication facilities. The integration of optical components on single chips is pivotal to the realization of miniature systems with high degree of complexity. Such novel photonic chips find abundant applications in optical communication, spectroscopy and signal processing. This work concentrates on harnessing nonlinear phenomena to this avail. The first part of this dissertation discusses, both from component and system level, the development of a frequency comb source with a semiconductor mode-locked laser at its heart. New nonlinear …


Non-Hermitian And Space-Time Mode Management, Nicholas Nye Jan 2019

Non-Hermitian And Space-Time Mode Management, Nicholas Nye

Electronic Theses and Dissertations

In the last few years, optics has witnessed the emergence of two fields namely metasurfaces and parity-time (PT) symmetry. Optical metasurfaces are engineered structures that provide unique responses to electromagnetic waves, absent in natural materials. On the other hand, PT symmetry has emerged from quantum mechanics, when a new class of non-Hermitian Hamiltonian quantum systems was shown to have real eigenvalues. In this work, we demonstrate how PT-symmetric diffractive structures are capable of eliminating diffraction orders in specific directions, while maintaining/enhancing the remaining orders. In the second part of this work, we emphasize on supersymmetry (SUSY) and its applications in …


Optical And Electrical Analysis Of Zno/Znte Micropillar Solar Cells, Sadia Binte Sohid Jan 2019

Optical And Electrical Analysis Of Zno/Znte Micropillar Solar Cells, Sadia Binte Sohid

Master’s Theses

The prime focus of the energy-research community in recent times has been replacing fossil fuels with renewable energy. Therefore, photovoltaic research areas are rapidly expanding in this era. The purpose of this work is to compare three different structural ZnO/ZnTe solar cell types (planar, axial micropillar and radial micropillar). The best optical and electrical performance has been obtained by the radial junction (core-shell) ZnO/ZnTe micropillar solar cell due to its pillar structure and radial junction. The unique advantage of the radial junction micropillar is that the angle of the incident light and the carrier collection is orthogonal. Therefore, the pillar …


Formulation And Implementation Of Iterative Method For Generating Spatially-Variant Lattices, Manuel Fernando Martinez Jan 2019

Formulation And Implementation Of Iterative Method For Generating Spatially-Variant Lattices, Manuel Fernando Martinez

Open Access Theses & Dissertations

The use of a matrix-free, memory-efficient approach to generate large-scale spatially variant lattices (SVL) was explored. A matrix-free iterative SVL generation algorithm was formulated and then implemented with a tremendous memory reduction observed. The algorithm consists of solving first-order central finite-differences along the entirety of the problem space point-by-point to obtain the grating phase function Φ(𝑠⃗) to which all desired spatially variant lattice properties are applied to. The algorithm was studied to identify key areas of data and task parallelism to exploit in heterogeneous computing systems consisting of clusters of central processing units (CPU) and graphics processing units (GPU) combinations. …


Computational Imaging Systems For High-Speed, Adaptive Sensing Applications, Yangyang Sun Jan 2019

Computational Imaging Systems For High-Speed, Adaptive Sensing Applications, Yangyang Sun

Electronic Theses and Dissertations

Driven by the advances in signal processing and ubiquitous availability of high-speed low-cost computing resources over the past decade, computational imaging has seen the growing interest. Improvements on spatial, temporal, and spectral resolutions have been made with novel designs of imaging systems and optimization methods. However, there are two limitations in computational imaging. 1), Computational imaging requires full knowledge and representation of the imaging system called the forward model to reconstruct the object of interest. This limits the applications in the systems with a parameterized unknown forward model such as range imaging systems. 2), the regularization in the optimization process …


Design And Fabrication Of Scalable Multifunctional Multimaterial Fibers And Textiles, Felix Tan Jan 2019

Design And Fabrication Of Scalable Multifunctional Multimaterial Fibers And Textiles, Felix Tan

Electronic Theses and Dissertations

Multimaterial fibers eschew the traditional mono-material structures typical of traditional optical fibers for novel internal architectures that combine disparate materials with distinct optical, mechanical, and electronic properties, thereby enabling novel optoelectronic functionalities delivered in the form factor of an extended fiber. This new class of fibers developed over the past two decades is attracting interest from researchers in such different fields as optics, textiles, and biomedicine. The juxtaposition of multiple materials integrated at micro- and nanoscales in complex geometries while ensuring intimate smooth interfaces extending continuously for kilometers facilitates unique applications such as non-invasive laser surgery, self-monitoring fibers, e-textiles, and …


Stable, Highly Luminescent Perovskite-Polymer Composites For Photonics Applications, Juan He Jan 2019

Stable, Highly Luminescent Perovskite-Polymer Composites For Photonics Applications, Juan He

Electronic Theses and Dissertations

Metal halide perovskites (simplified as perovskites as below), particularly those in nanocrystal forms, have recently emerged as highly efficient, bandgap tunable photonics materials that can be easily solution processed at low cost for display, lighting or other energy conversion applications. However, the quick degradation of perovskite nanocrystals under external stresses or upon colloidal aggregations has been a major challenge for most applications where high reliability is normally required. In this thesis, we have explored a polymer swelling-deswelling microencapsulation (SDM) process that enables the dispersion, in-situ crystallization and subsequent surface passivation of perovskite nanocrystals in polymer matrices, and leads to ultrastable …


Mode Coupling In Space-Division Multiplexed Systems, Huiyuan Liu Jan 2019

Mode Coupling In Space-Division Multiplexed Systems, Huiyuan Liu

Electronic Theses and Dissertations

Even though fiber-optic communication systems have been engineered to nearly approach the Shannon capacity limit, they still cannot meet the exponentially-growing bandwidth demand of the Internet. Space-division multiplexing (SDM) has attracted considerable attention in recent years due to its potential to address this capacity crunch. In SDM, the transmission channels support more than one spatial mode, each of which can provide the same capacity as a single-mode fiber. To make SDM practical, crosstalk among modes must be effectively managed. This dissertation presents three techniques for crosstalk management for SDM. In some cases such as intra-datacenter interconnects, even though mode crosstalk …


Novel Solid State Lasers Based On Volume Bragg Gratings, Evan Hale Jan 2019

Novel Solid State Lasers Based On Volume Bragg Gratings, Evan Hale

Electronic Theses and Dissertations

Since their invention in 1960, lasers have revolutionized modern technology, and tremendous amounts of innovation and development has gone into advancing their properties and efficiencies. This dissertation reports on further innovations by presenting novel solid state laser systems based on the volume Bragg gratings (VBGs) and the newly developed holographic phase mask (HPMs) for brightness enhancement, dual wavelength operation, and mode conversion. First, a new optical element was created by pairing the HPM with two surface gratings creating an achromatic holographic phase mask. This new optical device successfully performed transverse mode conversion of multiple narrow line laser sources operating from …


Cryogenic Performance Projections For Ultra-Small Oxide-Free Vertical-Cavity Surface-Emitting Lasers, Mina Bayat Jan 2019

Cryogenic Performance Projections For Ultra-Small Oxide-Free Vertical-Cavity Surface-Emitting Lasers, Mina Bayat

Electronic Theses and Dissertations

Small-sized vertical-cavity surface-emitting laser (VCSEL) may offer very low power consumption along with high reliability for cryogenic data transfer. Cryogenic data transfer has application in supercomputers and superconducting for efficient computing and also focal plane array cameras operating at 77 K, and at the lower temperature of 4 K for data extraction from superconducting circuits. A theoretical analysis is presented for 77 K and 4 K operation based on small cavity, oxide-free VCSEL sizes of 2 to 6 µm, that have been shown to operate efficiently at room temperature. Temperature dependent operation for optimally-designed VCSELs are studied by calculating the …


Artificial Magnetism And Topological Phenomena In Optics, Midya Parto Jan 2019

Artificial Magnetism And Topological Phenomena In Optics, Midya Parto

Electronic Theses and Dissertations

Recent years have witnessed intense research activities to effectively control the flow of photons using various classes of optical structures such as photonic crystals and metamaterials. In this regard, optics has benefited from concepts in condensed matter and solid-state physics, where similar problems concerning electronic wavefunctions arise. An important example of such correspondence is associated with the photon dynamics under the effect of an artificial magnetic field. This is especially important since photons, as neutral bosons, do not inherently interact with magnetic fields. One way to mitigate this issue is to exploit magneto-optical materials. However, as is well known, using …


High-Dynamic-Range Foveated Near-Eye Display System, Guanjun Tan Jan 2019

High-Dynamic-Range Foveated Near-Eye Display System, Guanjun Tan

Electronic Theses and Dissertations

Wearable near-eye display has found widespread applications in education, gaming, entertainment, engineering, military training, and healthcare, just to name a few. However, the visual experience provided by current near-eye displays still falls short to what we can perceive in the real world. Three major challenges remain to be overcome: 1) limited dynamic range in display brightness and contrast, 2) inadequate angular resolution, and 3) vergence-accommodation conflict (VAC) issue. This dissertation is devoted to addressing these three critical issues from both display panel development and optical system design viewpoints. A high-dynamic-range (HDR) display requires both high peak brightness and excellent dark …


Computational Imaging With Limited Photon Budget, Zheyuan Zhu Jan 2019

Computational Imaging With Limited Photon Budget, Zheyuan Zhu

Electronic Theses and Dissertations

The capability of retrieving the image/signal of interest from extremely low photon flux is attractive in scientific, industrial, and medical imaging applications. Conventional imaging modalities and reconstruction algorithms rely on hundreds to thousands of photons per pixel (or per measurement) to ensure enough signal-to-noise (SNR) ratio for extracting the image/signal of interest. Unfortunately, the potential of radiation or photon damage prohibits high SNR measurements in dose-sensitive diagnosis scenarios. In addition, imaging systems utilizing inherently weak signals as contrast mechanism, such as X-ray scattering-based tomography, or attosecond pulse retrieval from the streaking trace, entail prolonged integration time to acquire hundreds of …


Optical Sensing Of Structural Dynamics In Complex Media, Jose Rafael Guzman Sepulveda Jan 2019

Optical Sensing Of Structural Dynamics In Complex Media, Jose Rafael Guzman Sepulveda

Electronic Theses and Dissertations

Quantifying the structural dynamics of complex media is challenging because of the multiple temporal and spatial scales involved. Thanks to the ability to retrieve collective dynamics noninvasively, light scattering-based approaches are often the methods of choice. This dissertation discusses specific features of dynamic light scattering that utilizes spatio-temporal coherence gating. It is demonstrated that this optical fiber-based approach can operate over a large range of optical regimes and it has a number of unique capabilities such as an effective isolation of single scattering, a large sensitivity, and a high collection efficiency. Moreover, the approach also provides means for proper ensemble …


M2 Factor Of A Vector Schell-Model Beam, Milo W. Hyde Iv, Mark F. Spencer Jan 2019

M2 Factor Of A Vector Schell-Model Beam, Milo W. Hyde Iv, Mark F. Spencer

Faculty Publications

Extending existing scalar Schell-model source work, we derive the M2 factor for a general electromagnetic or vector Schell-model source to assess beam quality. In particular, we compute the M2 factors for two vector Schell-model sources found in the literature. We then describe how to synthesize vector Schell-model beams in terms of specified, desired M2 and present Monte Carlo simulation results to validate our analysis.


Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler Jan 2019

Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler

Faculty Publications

The elemental composition of heavy ions (with atomic number Z > 2) (hi-Z) in large gradual E > 10 MeV nuc-1 SEP events has been extensively studied in the 2-15 MeV nuc-1 range to determine the acceleration processes and transport properties of SEPs. These studies invariably are based on abundances relative to those of a single element such as C or O and often neglect H and He, the elements of primary interest for space weather. The total radiation of an SEP event is determined not only by the H and He properties but also by those of hi-Z ions …


Automation Of Data Collection From An Anechoic Chamber, Thomas S. Garner Jan 2019

Automation Of Data Collection From An Anechoic Chamber, Thomas S. Garner

Electronic Theses and Dissertations

This paper describes the calibration methods and the process that is used on the Ole Miss electrical engineering anechoic chamber. Furthermore the MATLAB code that operates the anechoic chamber has been updated to collect sweep data. The GUI also now includes a tab for calibration giving the user the ability to calibrate for their desired frequency range for when there is not sufficient calibration data already available.


Dual Graphene Patch Antenna For Ka Band Satellite Applications, Mohammed Amin Rabah, Mohammed Bekhti Jan 2019

Dual Graphene Patch Antenna For Ka Band Satellite Applications, Mohammed Amin Rabah, Mohammed Bekhti

International Journal of Aviation, Aeronautics, and Aerospace

Currently; grapheme offers a new opportunity to use in space technology and this is due to its amazing properties like conductivity, strength, flexibility and transparency which allows us to exploit new generation of ultra-fast nanoscale components; Since future wireless communication techniques are geared towards the use of the high frequency spectrum and many recent research prove this trend. This letter presents a proposal for design of a dual graphene-based antenna to use in new communication techniques in Ka band, where the proposed antenna can work for uplink and dowlink frequencies at same time since it has return loss less then …


Fast, Sparse Matrix Factorization And Matrix Algebra Via Random Sampling For Integral Equation Formulations In Electromagnetics, Owen Tanner Wilkerson Jan 2019

Fast, Sparse Matrix Factorization And Matrix Algebra Via Random Sampling For Integral Equation Formulations In Electromagnetics, Owen Tanner Wilkerson

Theses and Dissertations--Electrical and Computer Engineering

Many systems designed by electrical & computer engineers rely on electromagnetic (EM) signals to transmit, receive, and extract either information or energy. In many cases, these systems are large and complex. Their accurate, cost-effective design requires high-fidelity computer modeling of the underlying EM field/material interaction problem in order to find a design with acceptable system performance. This modeling is accomplished by projecting the governing Maxwell equations onto finite dimensional subspaces, which results in a large matrix equation representation (Zx = b) of the EM problem. In the case of integral equation-based formulations of EM problems, the M-by-N system matrix, Z, …


Modeling Strategies For Estimating And Suppressing Electromagnetic Interference And Improving Power Integrity, Tamar Makharashvili Jan 2019

Modeling Strategies For Estimating And Suppressing Electromagnetic Interference And Improving Power Integrity, Tamar Makharashvili

Doctoral Dissertations

"Decoupling capacitors are used to suppress high-frequency noise in power distribution networks. The inductance associated with a mounted decoupling capacitor can vary by 26% depending on characteristics of the printed circuit board. Here, simple and accurate inductance models of 2- and 8-terminal capacitors including connections to the power and return plane are developed. Circuit models of the capacitors and layout are created using the partial equivalent element circuit method which provide options for circuit-level simulations as well as analytic estimation of inductance. The circuit solution matches results from the full-wave simulation model within 9% for the 8-terminal capacitor and within …


Active Recall Networks For Multiperspectivity Learning Through Shared Latent Space Optimization, Theus Aspiras, Ruixu Liu, Vijayan K. Asari Jan 2019

Active Recall Networks For Multiperspectivity Learning Through Shared Latent Space Optimization, Theus Aspiras, Ruixu Liu, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

Given that there are numerous amounts of unlabeled data available for usage in training neural networks, it is desirable to implement a neural network architecture and training paradigm to maximize the ability of the latent space representation. Through multiple perspectives of the latent space using adversarial learning and autoencoding, data requirements can be reduced, which improves learning ability across domains. The entire goal of the proposed work is not to train exhaustively, but to train with multiperspectivity. We propose a new neural network architecture called Active Recall Network (ARN) for learning with less labels by optimizing the latent space. This …