Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 95

Full-Text Articles in Electromagnetics and Photonics

Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Jun 2023

Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

In this work, we investigate a class of planar photonic structures operating as passive thermoregulators. The radiative cooling process is adjusted through the incorporation of a phase change material (Vanadium Dioxide, VO2) in conjunction with a layer of transparent conductive oxide (Aluminum-doped Zinc Oxide, AZO). VO2 is known to undergo a phase transition from the “dielectric” phase to the “plasmonic” or “metallic” phase at a critical temperature close to 68°C. In addition, AZO shows plasmonic properties at the long-wave infrared spectrum, which, combined with VO2, provides a rich platform to achieve low reflections across the …


Wavelength And Power Dependence On Multilevel Behavior Of Phase Change Materials, Gary A. Sevison, Joshua A. Burrow, Haiyun Guo, Andrew M. Sarangan, Joshua R. Hendrickson, Imad Agha Aug 2021

Wavelength And Power Dependence On Multilevel Behavior Of Phase Change Materials, Gary A. Sevison, Joshua A. Burrow, Haiyun Guo, Andrew M. Sarangan, Joshua R. Hendrickson, Imad Agha

Electro-Optics and Photonics Faculty Publications

We experimentally probe the multilevel response of GeTe, Ge2Sb2Te5 (GST), and 4% tungsten-doped GST (W-GST) phase change materials (PCMs) using two wavelengths of light: 1550 nm, which is useful for telecom-applications, and near-infrared 780 nm, which is a standard wavelength for many experiments in atomic and molecular physics. We find that the materials behave differently with the excitation at the different wavelengths and identify useful applications for each material and wavelength. We discuss thickness variation in the thin films used as well and comment on the interaction of the interface between the material and the substrate with regard to the …


Optical Switching Performance Of Thermally Oxidized Vanadium Dioxide With An Integrated Thin Film Heater, Andrew M. Sarangan, Gamini Ariyawansa, Ilya Vitebskiy, Igor Anisimov Jul 2021

Optical Switching Performance Of Thermally Oxidized Vanadium Dioxide With An Integrated Thin Film Heater, Andrew M. Sarangan, Gamini Ariyawansa, Ilya Vitebskiy, Igor Anisimov

Electro-Optics and Photonics Faculty Publications

Optical switching performance of vanadium dioxide produced by thermal oxidation of vanadium is presented in this paper. A 100nm thick vanadium was oxidized under controlled conditions in a quartz tube furnace to produce approximately 200nm thick VO2. The substrate was appropriately coated on the front and back side to reduce reflection in the cold state, and an integrated thin film heater was fabricated to allow in-situ thermal cycling. Electrical measurements show a greater than three orders of magnitude change in resistivity during the phase transition. Optical measurements exhibit 70% transparency at 1500nm and about 15dB extinction across a wide spectral …


Tunable Optical Filter Using Phase Change Materials For Smart Ir Night Vision Applications, Remona Heenkenda, Keigo Hirakawa, Andrew Sarangan Jan 2021

Tunable Optical Filter Using Phase Change Materials For Smart Ir Night Vision Applications, Remona Heenkenda, Keigo Hirakawa, Andrew Sarangan

Electro-Optics and Photonics Faculty Publications

In this paper we present a tunable filter using Ge2Sb2Se4Te1 (GSST) phase change material. The design principle of the filter is based on a metal-insulator-metal (MIM) cavity operating in the reflection mode. This is intended for night vision applications that utilize 850nm as the illumination source. The filter allows us to selectively reject the 850nm band in one state. This is illustrated through several daytime and nighttime imaging applications.


Polarization-Selective Modulation Of Supercavity Resonances Originating From Bound States In The Continuum, Chan Kyaw, Riad Yahiaoui, Joshua A. Burrow, Viet Tran, Kyron Keelen, Wesley Sims, Eddie C. Red, Willie S. Rockward, Mikkel A. Thomas, Andrew M. Sarangan, Imad Agha, Thomas A. Searles Dec 2020

Polarization-Selective Modulation Of Supercavity Resonances Originating From Bound States In The Continuum, Chan Kyaw, Riad Yahiaoui, Joshua A. Burrow, Viet Tran, Kyron Keelen, Wesley Sims, Eddie C. Red, Willie S. Rockward, Mikkel A. Thomas, Andrew M. Sarangan, Imad Agha, Thomas A. Searles

Electro-Optics and Photonics Faculty Publications

Bound states in the continuum (BICs) are widely studied for their ability to confine light, produce sharp resonances for sensing applications and serve as avenues for lasing action with topological characteristics. Primarily, the formation of BICs in periodic photonic band gap structures are driven by symmetry incompatibility; structural manipulation or variation of incidence angle from incoming light. In this work, we report two modalities for driving the formation of BICs in terahertz metasurfaces. At normal incidence, we experimentally confirm polarization driven symmetry-protected BICs by the variation of the linear polarization state of light. In addition, we demonstrate through strong coupling …


Numerical Modeling Of Magnetic Fields For Mirror Neutron Search Experiment, Adam Johnston May 2020

Numerical Modeling Of Magnetic Fields For Mirror Neutron Search Experiment, Adam Johnston

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

This paper will outline the configuration of 3D magnetic field model simulated from electric current sources using MATLAB. The model is using 3D arrays allowing for quick and accurate numerical approximations of Bio-Savart integrals, of error < , modeling the behavior of a magnetic field due to current carrying wires. We will discuss the development of a 3D magnetic field configuration produced by the current carrying wires around a large 2.5 m diameter vacuum beam tube in the proposed mirror neutron search experiment at High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The simulations demonstrate that the magnetic field with uniformity better than ± 2.5 mG that will allow for optimal results in experiment within the controlled range of net magnetic field magnitudes |B| 500 mG and in the large vacuum tube along 20-m neutron flight path can be achieved for an approximately 6 cm radius section at the center of the tube.


Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh Nov 2018

Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh

Doctoral Dissertations

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric resonators much smaller in size than the wavelength of the incident light. Common examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips and fishnet structures. These types of materials are designed and fabricated in order to provide unique optical responses to the incident electromagnetic radiation that are not available in naturally existing materials. The MMs can exhibit unusual properties such as strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index materials (NIMs) can provide negative index of refraction which can be used in many applications …


Electromagnetic Wave-Matter Interactions In Complex Opto-Electronic Materials And Devices, Raj Kumar Vinnakota Nov 2018

Electromagnetic Wave-Matter Interactions In Complex Opto-Electronic Materials And Devices, Raj Kumar Vinnakota

Doctoral Dissertations

This dissertation explores the fundamentals of light-matter interaction towards applications in the field of Opto-electronic and plasmonic devices. In its core, this dissertation attempts and succeeds in the the modeling of light-matter interactions, which is of high importance for better understanding the rich physics underlying the dynamics of electromagnetic field interactions with charged particles. Here, we have developed a self-consistent multi-physics model of electromagnetism, semiconductor physics and thermal effects which can be readily applied to the field of plasmotronics and Selective Laser Melting (SLM). Plasmotronics; a sub-field of photonics has experienced a renaissance in recent years by providing a large …


The Relationship Between Electrical Conductivity And Magnetically Damped Motion, Kalem Akhtar Jun 2018

The Relationship Between Electrical Conductivity And Magnetically Damped Motion, Kalem Akhtar

The International Student Science Fair 2018

Varying electrical conductivities of different, non-magnetic metals appears to affect the magnitude of magnetically damped motion. To determine the relationship between magnetic damping and conductivity an experiment was designed using different length tubes of aluminium, copper and brass. The tubes had the same diameter and similar wall thickness. A short, cylindrical neodymium magnet was dropped through the tubes of and the time for the magnet to traverse the tube was recorded using a smartphone camera. These times allowed for the terminal velocity to be calculated for each metal length and the average terminal velocity for each metal was determined. This …


Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov Dec 2017

Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

In target-in-the-loop laser beam projection scenarios typical of remote sensing, directed energy, and adaptive optics applications, a transmitted laser beam propagates through an optically inhomogeneous medium toward a target, scatters off the target’s rough surface, and returns back to the transceiver plane. Coherent beam scattering off the randomly rough surface results in strong speckle modulation in the transceiver plane. This speckle modulation has been a long-standing challenge that limits performance of remote sensing, active imaging, and adaptive optics techniques. Using physics-based models of laser beam scattering off a randomly rough surface, we show that received speckle-field spatial and temporal characteristics …


Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov Nov 2017

Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

A laser beam propagation model that accounts for the joint effect of atmospheric turbulence and refractivity is introduced and evaluated through numerical simulations. In the numerical analysis of laser beam propagation, refractive index inhomogeneities along the atmospheric propagation path were represented by a combination of the turbulence-induced random fluctuations described in the framework of classical Kolmogorov turbulence theory and large-scale refractive index variations caused by the presence of an inverse temperature layer. The results demonstrate that an inverse temperature layer located in the vicinity of a laser beam’s propagation path may strongly impact the laser beam statistical characteristics including the …


Agenda: Second International Workshop On Thin Films For Electronics, Electro-Optics, Energy And Sensors (Tfe3s), University Of Dayton Research Institute Jun 2017

Agenda: Second International Workshop On Thin Films For Electronics, Electro-Optics, Energy And Sensors (Tfe3s), University Of Dayton Research Institute

Electro-Optics and Photonics Faculty Publications

University of Dayton’s Center of Excellence for Thin Film Research and Surface Engineering (CETRASE) is delighted to organize its second international workshop at the University of Dayton’s Research Institute (UDRI) campus in Dayton, Ohio, USA. The purpose of the new workshop is to exchange technical knowledge and boost technical and educational collaboration activities within the thin film research community through our CETRASE and the UDRI.


Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia Feb 2017

Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia

Andrew Sarangan

Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we present a comprehensive linear and nonlinear optical investigation of a metasurface composed of tilted gold nanowires. In the linear regime, we directly demonstrate the selective absorption of circularly polarised light depending on the orientation of the metasurface. In the nonlinear regime, we demonstrate for the first time how second harmonic …


Optimization-Free Optical Focal Field Engineering Through Reversing The Radiation Pattern From A Uniform Line Source, Yanzhong Yu, Qiwen Zhan Sep 2016

Optimization-Free Optical Focal Field Engineering Through Reversing The Radiation Pattern From A Uniform Line Source, Yanzhong Yu, Qiwen Zhan

Qiwen Zhan

A simple and flexible method is presented for the generation of optical focal field with prescribed characteristics. By reversing the field pattern radiated from a uniform line source, for which the electric current is constant along its extent, situated at the focus of a 4Pi focusing system formed by two confocal high-NA objective lenses, the required illumination distribution at the pupil plane for creating optical focal field with desired properties can be obtained. Numerical example shows that an arbitrary length optical needle with extremely high longitudinal polarization purity and consistent transverse size of ~0.36λ over the entire depth of focus …


Tailoring Optical Complex Fields With Nano-Metallic Surfaces, Guanghao Rui, Qiwen Zhan Sep 2016

Tailoring Optical Complex Fields With Nano-Metallic Surfaces, Guanghao Rui, Qiwen Zhan

Qiwen Zhan

Recently there is an increasing interest in complex optical fields with spatially inhomogeneous state of polarizations and optical singularities. Novel effects and phenomena have been predicted and observed for light beams with these unconventional states. Nanostructured metallic thin film offers unique opportunities to generate, manipulate and detect these novel fields. Strong interactions between nano-metallic surfaces and complex optical fields enable the development of highly compact and versatile functional devices and systems. In this review, we first briefly summarize the recent developments in complex optical fields. Various nano-metallic surface designs that can produce and manipulate complex optical fields with tailored characteristics …


Creation Of Identical Multiple Focal Spots With Prescribed Axial Distribution, Yanzhong Yu, Qiwen Zhan Sep 2016

Creation Of Identical Multiple Focal Spots With Prescribed Axial Distribution, Yanzhong Yu, Qiwen Zhan

Qiwen Zhan

We present a scheme for the construction of coaxially equidistant multiple focal spots with identical intensity profiles for each individual focus and a predetermined number and spacing. To achieve this, the radiation field from an antenna is reversed and then gathered by high numerical aperture objective lenses. Radiation patterns from three types of line sources, i.e., the electric current, magnetic current and electromagnetic current distributions, with cosine-squared taper are respectively employed to generate predominately longitudinally polarized bright spots, azimuthally polarized doughnuts, and focal spots with a perfect spherically symmetric intensity distribution. The required illuminations at the pupil plane of a …


Digital Image Processing, Russell C. Hardie, Majeed M. Hayat Sep 2016

Digital Image Processing, Russell C. Hardie, Majeed M. Hayat

Russell C. Hardie

In recent years, digital images and digital image processing have become part of everyday life. This growth has been primarily fueled by advances in digital computers and the advent and growth of the Internet. Furthermore, commercially available digital cameras, scanners, and other equipment for acquiring, storing, and displaying digital imagery have become very inexpensive and increasingly powerful. An excellent treatment of digital images and digital image processing can be found in Ref. [1]. A digital image is simply a two-dimensional array of finite-precision numerical values called picture elements (or pixels). Thus a digital image is a spatially discrete (or discrete-space) …


Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb Aug 2016

Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb

Bradley D. Duncan

3-D holographic ladar uses digital holography with frequency diversity to add the ability to resolve targets in range. A key challenge is that since individual frequency samples are not recorded simultaneously, differential phase aberrations may exist between them making it difficult to achieve range compression. We describe steps specific to this modality so that phase gradient algorithms (PGA) can be applied to 3-D holographic ladar data for phase corrections across multiple temporal frequency samples. Substantial improvement of range compression is demonstrated with a laboratory experiment where our modified PGA technique is applied. Additionally, the PGA estimator is demonstrated to be …


Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia Aug 2016

Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia

Electro-Optics and Photonics Faculty Publications

Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we present a comprehensive linear and nonlinear optical investigation of a metasurface composed of tilted gold nanowires. In the linear regime, we directly demonstrate the selective absorption of circularly polarised light depending on the orientation of the metasurface. In the nonlinear regime, we demonstrate for the first time how second harmonic …


Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb Jun 2016

Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb

Electro-Optics and Photonics Faculty Publications

3-D holographic ladar uses digital holography with frequency diversity to add the ability to resolve targets in range. A key challenge is that since individual frequency samples are not recorded simultaneously, differential phase aberrations may exist between them making it difficult to achieve range compression. We describe steps specific to this modality so that phase gradient algorithms (PGA) can be applied to 3-D holographic ladar data for phase corrections across multiple temporal frequency samples. Substantial improvement of range compression is demonstrated with a laboratory experiment where our modified PGA technique is applied. Additionally, the PGA estimator is demonstrated to be …


Spatio-Spectral Sampling And Color Filter Array Design, Keigo Hirakawa, Patrick Wolfe Mar 2016

Spatio-Spectral Sampling And Color Filter Array Design, Keigo Hirakawa, Patrick Wolfe

Keigo Hirakawa

Owing to the growing ubiquity of digital image acquisition and display, several factors must be considered when developing systems to meet future color image processing needs, including improved quality, increased throughput, and greater cost-effectiveness. In consumer still-camera and video applications, color images are typically obtained via a spatial subsampling procedure implemented as a color filter array (CFA), a physical construction whereby only a single component of the color space is measured at each pixel location. Substantial work in both industry and academia has been dedicated to post-processing this acquired raw image data as part of the so-called image processing pipeline, …


Investigation Of Real-Time Optical Scanning Holography, Bradley D. Duncan Nov 2015

Investigation Of Real-Time Optical Scanning Holography, Bradley D. Duncan

Bradley D. Duncan

Real-time holographic recording using an optical heterodyne scanning technique was proposed by Poon in 1985. The first part of this dissertation provides a detailed theoretical treatment of the technique, based on a Gaussian beam analysis. Topics to be addressed include the derivations of the optical transfer function (OTF) and impulse response of the scanning holographic recording system, reconstructed image resolution and magnification, methods of carrier frequency hologram generation and experimental verification of the recording technique based on careful measurements of a hologram corresponding to a simple transmissive slit. Furthermore, computer simulations are presented pertaining to the incoherent nature of the …


Imaging Diffractometer With Holographic Encoding Enhancements For Laser Sensing And Characterization, Joesph Binford, Bradley Duncan, Jack Parker, Elizabeth Beecher, Mark Delong Nov 2015

Imaging Diffractometer With Holographic Encoding Enhancements For Laser Sensing And Characterization, Joesph Binford, Bradley Duncan, Jack Parker, Elizabeth Beecher, Mark Delong

Bradley D. Duncan

What is believed to be a novel holographic optical encoding scheme has been developed to enhance the performance of laser sensors designed for the measurement of wavelength and angular trajectory. A prototype holographic imaging diffractometer has been created to reconstruct holographic cueing patterns superimposed in the focal plane of wide-angle scene imagery. Based on experimental pattern metric measurements at the focal plane, a theoretical model is used to compute the laser source wavelength and its apparent propagation direction within the sensor's field of view. The benefits of incorporating holographic enhancements within an imager-based sensor architecture are discussed.


Review: 'Optical Fiber Communications' (2nd Edition), By Gerd Keiser, Bradley D. Duncan Nov 2015

Review: 'Optical Fiber Communications' (2nd Edition), By Gerd Keiser, Bradley D. Duncan

Bradley D. Duncan

If first impressions are worth anything (and they usually are), I would have to admit that my first impression of the second edition of Gerd Keiser's now popular text Optical Fiber Communications was quite good. My compliments are hereby extended to the publisher for choosing a rather handsome cover and dust jacket. It stands in strong contrast to the text's first edition, which still ranks as probably the ugliest book I own, with color choices ranging from dull cream and "baby" blue to pale pink! I am now happy to say that this older version has been discretely·retired to the …


Optical Sparse Aperture Imaging, Nicholas Miller, Matthew Dierking, Bradley Duncan Nov 2015

Optical Sparse Aperture Imaging, Nicholas Miller, Matthew Dierking, Bradley Duncan

Bradley D. Duncan

The resolution of a conventional diffraction-limited imaging system is proportional to its pupil diameter. A primary goal of sparse aperture imaging is to enhance resolution while minimizing the total light collection area; the latter being desirable, in part, because of the cost of large, monolithic apertures. Performance metrics are defined and used to evaluate several sparse aperture arrays constructed from multiple, identical, circular subapertures. Subaperture piston and∕or tilt effects on image quality are also considered. We selected arrays with compact nonredundant autocorrelations first described by Golay. We vary both the number of subapertures and their relative spacings to arrive at …


Monte Carlo Simulation Of Multiple Photon Scattering In Sugar Maple Tree Canopies, Michael Greiner, Bradley Duncan, Matthew Dierking Nov 2015

Monte Carlo Simulation Of Multiple Photon Scattering In Sugar Maple Tree Canopies, Michael Greiner, Bradley Duncan, Matthew Dierking

Bradley D. Duncan

Detecting objects hidden beneath forest canopies is a difficult task for optical remote sensing systems. Rather than relying upon the existence of gaps between leaves, as other researchers have done, our ultimate goal is to use light scattered by leaves to image through dense foliage. Herein we describe the development of a Monte Carlo model for simulating the scattering of light as it propagates through the leaves of an extended tree canopy. We measured several parameters, including the gap fraction and maximum leaf-area density, of a nearby sugar maple tree grove and applied them to our model. We report the …


Improving Mid-Frequency Contrast In Sparse Aperture Optical Imaging Systems Based Upon The Golay-9 Array, Andrew Stokes, Bradley Duncan, Matthew Dierking Nov 2015

Improving Mid-Frequency Contrast In Sparse Aperture Optical Imaging Systems Based Upon The Golay-9 Array, Andrew Stokes, Bradley Duncan, Matthew Dierking

Bradley D. Duncan

Sparse aperture imaging systems are capable of producing high resolution images while maintaining an overall light collection area that is small compared to a fully filled aperture yielding the same resolution. This is advantageous for applications where size, volume, weight and/or cost are important considerations. However, conventional sparse aperture systems pay the penalty of reduced contrast at midband spatial frequencies. This paper will focus on increasing the midband contrast of sparse aperture imaging systems based on the Golay-9 array. This is one of a family of two-dimensional arrays we have previously examined due to their compact, non-redundant autocorrelations. The modulation …


Periodic, Pseudo-Noise Waveforms For Multi-Function Coherent Ladar, Matthew Dierking, Bradley Duncan Nov 2015

Periodic, Pseudo-Noise Waveforms For Multi-Function Coherent Ladar, Matthew Dierking, Bradley Duncan

Bradley D. Duncan

We report the use of periodic, pseudonoise waveforms in a multifunction coherent ladar system. We exploit the Doppler sensitivity of these waveforms, as well as agile processing, to enable diverse ladar functions, including high range resolution imaging, macro-Doppler imaging, synthetic aperture ladar, and range-resolved micro-Doppler imaging. We present analytic expressions and simulations demonstrating the utility of pseudonoise waveforms for each of the ladar modes. We also discuss a laboratory pseudonoise ladar system that was developed to demonstrate range compression and range-resolved micro-Doppler imaging, as well as the phase recovery common to each of the coherent modes.


Holographic Aperture Ladar, Bradley Duncan, Matthew Dierking Nov 2015

Holographic Aperture Ladar, Bradley Duncan, Matthew Dierking

Bradley D. Duncan

Holographic aperture ladar is a variant of synthetic aperture ladar that seeks to increase cross-range scene resolution by synthesizing a large effective aperture through the motion of a smaller receiver and through the subsequent proper phasing and correlation of the detected signals in postprocessing. Unlike in conventional synthetic aperture ladar, however, holographic aperture ladar makes use of a two- dimensional translating sensor array, not simply a translating point detector. Also unlike in conventional synthetic aperture ladar, holographic aperture images will be formed in the two orthogonal cross-range dimensions parallel and perpendicular to the sensor platform’s direction of motion. The central …


Experimental Demonstration Of A Stripmap Holographic Aperture Ladar System, Jason Stafford, Bradley Duncan, Matthew Dierking Nov 2015

Experimental Demonstration Of A Stripmap Holographic Aperture Ladar System, Jason Stafford, Bradley Duncan, Matthew Dierking

Bradley D. Duncan

By synthesizing large effective apertures through the translation of a smaller imaging sensor and the subsequent proper phasing and correlation of detected signals in postprocessing, holographic aperture ladar (HAL) systems seek to increase the resolution of remotely imaged targets. The stripmap HAL process was demonstrated in the laboratory, for the first time to our knowledge. Our results show that the stripmap HAL transformation can precisely account for off-axis transmitter induced phase migrations. This in turn allows multiple pupil plane field segments, sequentially collected across a synthetic aperture, to be coherently mosaiced together. As a direct consequence, we have been able …