Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 245

Full-Text Articles in Electromagnetics and Photonics

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi Jan 2024

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi

Theses and Dissertations--Electrical and Computer Engineering

The long-standing technological pillars for computing systems evolution, namely Moore's law and Von Neumann architecture, are breaking down under the pressure of meeting the capacity and energy efficiency demands of computing and communication architectures that are designed to process modern data-centric applications related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In response, both industry and academia have turned to 'more-than-Moore' technologies for realizing hardware architectures for communication and computing. Fortunately, Silicon Photonics (SiPh) has emerged as one highly promising ‘more-than-Moore’ technology. Recent progress has enabled SiPh-based interconnects to outperform traditional electrical interconnects, offering advantages like high bandwidth density, …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Smart Uv-C Disinfectant Module, Nicole Baldy, Luke Rogers, Haitham Saleh Jan 2022

Smart Uv-C Disinfectant Module, Nicole Baldy, Luke Rogers, Haitham Saleh

Williams Honors College, Honors Research Projects

The Smart UV Disinfectant device shall sanitize objects which are 18”x14”x8” or smaller and less than 20 lbs. using UV-C light. This device should contain many safety measures to prevent human and animal exposure to the UV-C light and have no public touchpoints to operate the interface. In order to achieve the first objective, this device shall contain a "sanitizing chamber" which completely encloses the object to be sanitized to prevent outside exposure with detection of any lifeforms inside of the chamber; for the second objective, it will contain a wireless interface to an Android application which can be used …


Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli Oct 2021

Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli

Electrical and Computer Engineering Faculty Publications

Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we use a realistic observation model that includes optical degradation from diffraction and sensor degradation from detector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN) architecture designed for SR …


Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa Mar 2021

Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa

Electrical and Computer Engineering Faculty Publications

We propose accelerated implementations of bilateral filter (BF) and nonlocal means (NLM) called color-compressive bilateral filter (CCBF) and color-compressive nonlocal means (CCNLM). CCBF and CCNLM are random filters, whose Monte-Carlo averaged output images are identical to the output images of conventional BF and NLM, respectively. However, CCBF and CCNLM are considerably faster because the spatial processing of multiple color channels are combined into a single random filtering process. This implies that the complexity of CCBF and CCNLM is less sensitive to color dimension (e.g., hyperspectral images) relatively to other BF and NLM methods. We experimentally verified that the execution time …


Instrumentation, Modeling, And Sound Metamodeling Foundations For Complex Hybrid Systems, Natasha Amelia Jarus Jan 2021

Instrumentation, Modeling, And Sound Metamodeling Foundations For Complex Hybrid Systems, Natasha Amelia Jarus

Doctoral Dissertations

Many of our critical infrastructures, from power grids to water distribution networks, are complex hybrid systems that use software to control their non-trivial physical dynamics. These systems must be able to capably serve their purpose, while also being reliable, dependable, safe, secure, and efficient. Representation and analysis of these features requires the creation of several distinct models. These models may encode design goals or be derived from collected instrumentation data, reflecting both how a system ought to operate and how it does operate. It is essential to ensure that all of these models consistently and accurately describe the same system. …


Improve The Prototype Of Low-Cost Near-Infrared Diffuse Optical Imaging System, Chen Xu, Mohammed Z. Shakil Dec 2020

Improve The Prototype Of Low-Cost Near-Infrared Diffuse Optical Imaging System, Chen Xu, Mohammed Z. Shakil

Publications and Research

Diffuse Optical Tomography (DOT) and Optical Spectroscopy using near-infrared (NIR) diffused light has demonstrated great potential for the initial diagnosis of tumors and in the assessment of tumor vasculature response to neoadjuvant chemotherapy. The aims of this project are 1) to test the different types of LEDs in the near-infrared range, and design the driving circuit, and test the modulation of LEDs at different frequencies; 2) to test the APDs as a detector, and build the receiver system and compare efficiency with pre-built systems. In this project, we are focusing on creating a low-cost infrared transmission system for tumor and …


The Characterization Of Effective Electromagnetic Fields On The Safety And Quality Of Low-Moisture Foods (Effs) - Prototype Device Development, Joe G. Sandoval Jun 2020

The Characterization Of Effective Electromagnetic Fields On The Safety And Quality Of Low-Moisture Foods (Effs) - Prototype Device Development, Joe G. Sandoval

Electrical Engineering

Contamination of low-moisture foods including flour, wheat grain, baby formula, and more, have increasingly become a concern due to sanitizing challenges. While industrial food processors have long used RF heating to sanitize mass quantities, an equivalent consumer device is absent from the market today. The Characterization of Effective Electromagnetic Fields on the Safety and Quality of Low-Moisture Foods (EEFS) project is an interdisciplinary effort to develop an RF heating consumer device to sanitize low-moisture foods.

A prototype device was designed to sanitize low-moisture food items using RF heating acceptable for commercial or consumer applications.


Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam Feb 2020

Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam

Faculty Publications

Storm drains and sanitary sewers are prone to backups and overflows due to extra amount wastewater entering the pipes. To prevent that, it is imperative to efficiently monitor the urban underground infrastructure. The combination of sensors system and wireless underground communication system can be used to realize urban underground IoT applications, e.g., storm water and wastewater overflow monitoring systems. The aim of this article is to establish a feasibility of the use of wireless underground communications techniques, and wave propagation through the subsurface soil and asphalt layers, in an underground pavement system for storm water and sewer overflow monitoring application. …


A Parallel Direct Method For Finite Element Electromagnetic Computations Based On Domain Decomposition, Javad Moshfegh Nov 2019

A Parallel Direct Method For Finite Element Electromagnetic Computations Based On Domain Decomposition, Javad Moshfegh

Doctoral Dissertations

High performance parallel computing and direct (factorization-based) solution methods have been the two main trends in electromagnetic computations in recent years. When time-harmonic (frequency-domain) Maxwell's equation are directly discretized with the Finite Element Method (FEM) or other Partial Differential Equation (PDE) methods, the resulting linear system of equations is sparse and indefinite, thus harder to efficiently factorize serially or in parallel than alternative methods e.g. integral equation solutions, that result in dense linear systems. State-of-the-art sparse matrix direct solvers such as MUMPS and PARDISO don't scale favorably, have low parallel efficiency and high memory footprint. This work introduces a new …


Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah Apr 2019

Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah

Faculty Publications

The extra quantities of wastewater entering the pipes can cause backups that result in sanitary sewer overflows. Urban underground infrastructure monitoring is important for controlling the flow of extraneous water into the pipelines. By combining the wireless underground communications and sensor solutions, the urban underground IoT applications such as real time wastewater and storm water overflow monitoring can be developed. In this paper, the path loss analysis of wireless underground communications in urban underground IoT for wastewater monitoring has been presented. It has been shown that the communication range of up to 4 kilometers can be achieved from an underground …


An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam Apr 2019

An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam

Faculty Publications

Underground sensing and propagation of Signals in the Soil (SitS) medium is an electromagnetic issue. The path loss prediction with higher accuracy is an open research subject in digital agriculture monitoring applications for sensing and communications. The statistical data are predominantly derived from site-specific empirical measurements, which is considered an impediment to universal application. Nevertheless, in the existing literature, statistical approaches have been applied to the SitS channel modeling, where impulse response analysis and the Friis open space transmission formula are employed as the channel modeling tool in different soil types under varying soil moisture conditions at diverse communication distances …


Transcribing Braille Code: Learning Equations Across Platforms, Deegan Atha, Courtney Balogh Nov 2018

Transcribing Braille Code: Learning Equations Across Platforms, Deegan Atha, Courtney Balogh

Purdue Journal of Service-Learning and International Engagement

Deegan Atha, a graduating senior in electrical engineering and a future engineer, is interested in human-centered design and developing technology that helps students engage and be successful in STEM.

Courtney Balogh, a junior in mechanical engineering, is interested in human-centered design and the importance it plays in product development. Deegan and Courtney are members of the Purdue EPICS project, Learning Equations Across Platforms (LEAP). They partnered with the Indiana School for the Blind and Visually Impaired (ISBVI) to develop a braille transcription device and web application that converts braille to print in real time.


Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison Aug 2018

Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison

The Summer Undergraduate Research Fellowship (SURF) Symposium

Measurement of soil moisture, especially the root zone soil moisture, is important in agriculture, meteorology, and hydrology. Root zone soil moisture is concerned with the first meter down the soil. Active and passive remote sensing methods used today utilizing L-band(1-2GHz) are physically limited to a sensing depth of about 5 cm or less. To remotely sense the soil moisture in the deeper parts of the soil, the frequency should be lowered. Lower frequencies cannot be used in active spaceborne instruments because of their need for larger antennas, radio frequency interference (RFI), and frequency spectrum allocations. Ground-based passive remote sensing using …


Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar Jun 2018

Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar

Cappa Publications

Using a spiral microaxicon with the topological charge 2 and NA = 0.6 operating at a 532-nm wavelength and fabricated by electron-beam lithography, we experimentally demonstrate the rotation of a two-petal laser beam in the near field (several micrometers away from the axicon surface). The estimated rotation rate is 55 °/mm and linearly dependent on the on-axis distance, with the theoretical rotation rate being 53 °/mm. The experimentally measured rotation rate is found to be linear and coincident with the simulation results only on the on-axis segment from 1.5 to 3 mm. The experimentally measured rotation rate is 66 °/mm …


The Design, Building, And Testing Of A Constant On Discreet Jammer For The Ieee 802.15.4/Zigbee Wireless Communication Protocol, Alexandre J. Marette Jun 2018

The Design, Building, And Testing Of A Constant On Discreet Jammer For The Ieee 802.15.4/Zigbee Wireless Communication Protocol, Alexandre J. Marette

Master's Theses

As wireless protocols become easier to implement, more products come with wireless connectivity. This latest push for wireless connectivity has left a gap in the development of the security and the reliability of some protocols. These wireless protocols can be used in the growing field of IoT where wireless sensors are used to share information throughout a network. IoT is being implemented in homes, agriculture, manufactory, and in the medical field. Disrupting a wireless device from proper communication could potentially result in production loss, security issues, and bodily harm. The 802.15.4/ZigBee protocol is used in low power, low data rate, …


Image Processing Applications In Real Life: 2d Fragmented Image And Document Reassembly And Frequency Division Multiplexed Imaging, Houman Kamran Habibkhani Apr 2018

Image Processing Applications In Real Life: 2d Fragmented Image And Document Reassembly And Frequency Division Multiplexed Imaging, Houman Kamran Habibkhani

LSU Doctoral Dissertations

In this era of modern technology, image processing is one the most studied disciplines of signal processing and its applications can be found in every aspect of our daily life. In this work three main applications for image processing has been studied.

In chapter 1, frequency division multiplexed imaging (FDMI), a novel idea in the field of computational photography, has been introduced. Using FDMI, multiple images are captured simultaneously in a single shot and can later be extracted from the multiplexed image. This is achieved by spatially modulating the images so that they are placed at different locations in the …


Coexistence And Secure Communication In Wireless Networks, Saygin Bakşi Jan 2018

Coexistence And Secure Communication In Wireless Networks, Saygin Bakşi

Electrical & Computer Engineering Theses & Dissertations

In a wireless system, transmitted electromagnetic waves can propagate in all directions and can be received by other users in the system. The signals received by unintended receivers pose two problems; increased interference causing lower system throughput or successful decoding of the information which removes secrecy of the communication. Radio frequency spectrum is a scarce resource and it is allocated by technologies already in use. As a result, many communication systems use the spectrum opportunistically whenever it is available in cognitive radio setting or use unlicensed bands. Hence, efficient use of spectrum by sharing users is crucial to increase maximize …


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Jun 2017

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Russell C. Hardie

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster May 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Electrical and Computer Engineering Faculty Publications

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Identity‐Based Schemes For A Secured Big Data And Cloud Ict Framework In Smart Grid System, Feng Ye, Yi Qian, Rose Qingyang Hu Dec 2016

Identity‐Based Schemes For A Secured Big Data And Cloud Ict Framework In Smart Grid System, Feng Ye, Yi Qian, Rose Qingyang Hu

Electrical and Computer Engineering Faculty Publications

Smart grid is an intelligent cyber physical system (CPS). The CPS generates a massive amount of data for efficient grid operation. In this paper, a big data‐driven, cloud‐based information and communication technology (ICT) framework for smart grid CPS is proposed. The proposed ICT framework deploys hybrid cloud servers to enhance scalability and reliability of smart grid communication infrastructure. Because the data in the ICT framework contains much privacy of customers and important data for automated controlling, the security of data transmission must be ensured. In order to secure the communications over the Internet in the system, identity‐based schemes are proposed …


Histogram Of Oriented Phase (Hop): A New Descriptor Based On Phase Congruency, Hussin Ragb, Vijayan K. Asari Oct 2016

Histogram Of Oriented Phase (Hop): A New Descriptor Based On Phase Congruency, Hussin Ragb, Vijayan K. Asari

Vijayan K. Asari

In this paper we present a low level image descriptor called Histogram of Oriented Phase based on phase congruency concept and the Principal Component Analysis (PCA). Since the phase of the signal conveys more information regarding signal structure than the magnitude, the proposed descriptor can precisely identify and localize image features over the gradient based techniques, especially in the regions affected by illumination changes. The proposed features can be formed by extracting the phase congruency information for each pixel in the image with respect to its neighborhood. Histograms of the phase congruency values of the local regions in the image …


Creation Of Carbon Nanotube Based Biosensors Through Dielectrophoretic Assembly, Nilan S. Mani, Steve Kim, Kaushik Annam, Danielle Bane, Guru Subramanyam Sep 2016

Creation Of Carbon Nanotube Based Biosensors Through Dielectrophoretic Assembly, Nilan S. Mani, Steve Kim, Kaushik Annam, Danielle Bane, Guru Subramanyam

Guru Subramanyam

Due to their excellent electrical, optical, and mechanical properties, nanosized single wall carbon nanotubes (SWNTs) have attracted significant attention as a transducing element in nano-bio sensor research. Controlled assembly, device fabrication, and bio-functionalization of the SWNTs are crucial in creating the sensors. In this study, working biosensor platforms were created using dielectrophoretic assembly of single wall carbon nanotubes (SWNTs) as a bridge between two gold electrodes. SWNTs in a commercial SDS surfactant solution were dispensed in the gap between the two gold electrodes, followed by applying an ac voltage across the two electrodes. The dielectrophoresis aligns the CNTs and forms …


Dna Based Electrolyte/Separator For Lithium Battery Application, Jitendra Kumar, Fahima Ouchen-Bouchendouka, Devin A. Smarra, Guru Subramanyam, James Grote Sep 2016

Dna Based Electrolyte/Separator For Lithium Battery Application, Jitendra Kumar, Fahima Ouchen-Bouchendouka, Devin A. Smarra, Guru Subramanyam, James Grote

Guru Subramanyam

In this study, we demonstrated the use of DNA-CTMA (DC) in combination with PolyVinylidene Fluoride (PVDF) as a host matrix or separator for Lithium based electrolyte to form solid polymer/gel like electrolyte for potential application in Li-ion batteries.

The addition of DC provided a better thermal stability of the composite electrolyte as shown by the thermos-gravimetric analysis (TGA). The AC conductivity measurements suggest that the addition of DC to the gel electrolyte had no effect on the overall ionic conductivity of the composite. The obtained films are flexible with high mechanical stretch-ability as compared to the gel type electrolytes only.


Segmentation Of Pulmonary Nodules In Computed Tomography Using A Regression Neural Network Approach And Its Application To The Lung Image Database Consortium And Image Database Resource Initiative Dataset, Temesguen Messay, Russell C. Hardie, Timothy R. Tuinstra Sep 2016

Segmentation Of Pulmonary Nodules In Computed Tomography Using A Regression Neural Network Approach And Its Application To The Lung Image Database Consortium And Image Database Resource Initiative Dataset, Temesguen Messay, Russell C. Hardie, Timothy R. Tuinstra

Russell C. Hardie

We present new pulmonary nodule segmentation algorithms for computed tomography (CT). These include a fully-automated (FA) system, a semi-automated (SA) system, and a hybrid system. Like most traditional systems, the new FA system requires only a single user-supplied cue point. On the other hand, the SA system represents a new algorithm class requiring 8 user-supplied control points. This does increase the burden on the user, but we show that the resulting system is highly robust and can handle a variety of challenging cases. The proposed hybrid system starts with the FA system.

If improved segmentation results are needed, the SA …


Translation Of 'Profiles In Faith', Monish Ranjan Chatterjee Aug 2016

Translation Of 'Profiles In Faith', Monish Ranjan Chatterjee

Monish R. Chatterjee

Sarat Chandra Chatterjee (1876-1938) may be considered one of the three most significant figures of the literary component of the Bengal Renaissance, the other two being Bankim Chandra Chatterjee (1838-1894) and Rabindranath Tagore (1861-1941). As much as Bankim Chandra is identified with the new age in the Bengali novel, and the development of serious vernacular journalism, and Rabindranath with modern/classical movements in Bengali poetry and music, along with novel ideas in methods of education and teaching, Sarat Chandra, as a novelist and storyteller, perfected the art of narration and critical analyses of a variety of contemporaneous social and political issues, …


Translation Of 'Seasons Of Life: A Panoramic Selection Of Songs By Rabindranath Tagore', Monish Ranjan Chatterjee Aug 2016

Translation Of 'Seasons Of Life: A Panoramic Selection Of Songs By Rabindranath Tagore', Monish Ranjan Chatterjee

Monish R. Chatterjee

No abstract provided.


Translation Of 'Balika Badhu: A Selected Anthology Of Bengali Short Stories', Monish Ranjan Chatterjee Aug 2016

Translation Of 'Balika Badhu: A Selected Anthology Of Bengali Short Stories', Monish Ranjan Chatterjee

Monish R. Chatterjee

This project, which began with the desire to render into English a rather long tale by Bimal Kar about five years ago, eventually grew into a considerably more extended compilation of Bengali short stories by 10 of the most well-known practitioners of that art since the heyday of Rabindranath Tagore. The collection is limited in many ways, not the least of which being that no woman writer has been included, and that it contains only a baker's dozen stories (if we count Bonophool's micro-stories collectively as one ) — a number pitifully small considering the vast and prolific field of …