Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 60

Full-Text Articles in Electromagnetics and Photonics

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew Mar 2024

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We develop six-dimensional single-molecule orientation-localization microscopy (SMOLM) to measure the 3D positions and 3D orientations simultaneously of single fluorophores. We show how careful optimization of phase and polarization modulation components can encode phase, polarization, and angular spectrum information from each fluorescence photon into a microscope’s dipole-spread function. We used the transient binding and blinking of Nile red (NR) to characterize the helical structure of fibrils formed by designed amphipathic peptides, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. We also deployed merocyanine 540 to uncover the interfacial architectures of biomolecular condensates.


Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, Cheolgi Kim Jan 2024

Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, Cheolgi Kim

Bioelectronics Publications

Conventional magnetophoresis techniques for manipulating biocarriers and cells predominantly rely on large-scale electromagnetic systems, which is a major obstacle to the development of portable and miniaturized cell-on-chip platforms. Herein, a novel magnetic engineering approach by tailoring a nanoscale notch on a disk micromagnet using two-step optical and thermal lithography is developed. Versatile manipulations are demonstrated, such as separation and trapping, of carriers and cells by mediating changes in the magnetic domain structure and discontinuous movement of magnetic energy wells around the circumferential edge of the micromagnet caused by a locally fabricated nano-notch in a low magnetic field system. The motion …


Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Engineering The Spectrum Of Near-Field Thermal Radiation, Saman Zare Dec 2022

Engineering The Spectrum Of Near-Field Thermal Radiation, Saman Zare

Electronic Theses and Dissertations

Thermal emission observed at sub-wavelength distances from the thermal source is referred to as near-field thermal radiation. Thermal radiation in the near-field regime can exceed Planck’s blackbody limit by orders of magnitude and be quasi-monochromatic. Due to these unique properties, near-field thermal radiation is very promising for several thermal management and energy harvesting applications. Many of these applications, such as nanogap thermophotovoltaics and thermal rectification, require near-field spectra that are not found among natural materials. Artificial metamaterials, which are engineered at the sub-wavelength scale, have been theoretically proposed for tuning the spectrum of near-field thermal radiation. However, engineering the near-field …


Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew Dec 2022

Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Imaging of both the positions and orientations of single fluorophores, termed single-molecule orientation-localization microscopy, is a powerful tool for the study of biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here we realize a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the three-dimensional (3D) positions and 3D orientations of single molecules, with precisions of 10.9 nm and 2.0° over a 1.5-μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red molecules transiently bound to lipid-coated spheres, accurately resolving …


Design Of Arbitrary Planar Optical Devices With Full Phase Control Using Nanoimprinting Of Refractive Index, Matthew Panipinto Nov 2022

Design Of Arbitrary Planar Optical Devices With Full Phase Control Using Nanoimprinting Of Refractive Index, Matthew Panipinto

All Theses

Planar optical devices offer a lightweight solution to the constraints found in traditional optical devices. While subwavelength patterning of optics offers attractive performance and size, traditional fabrication methods demand a trade-off between resolution and throughput that presents a significant hurdle for the widespread use of subwavelength devices. Nanoimprinting of refractive index (NIRI) is a novel fabrication method pioneered in previous work that offers promise in mitigating the throughput issues that hamstring traditional fabrication methods. However, NIRI has not been shown to impart full $2\pi$ phase control in planar optical devices, nor has a method for fabricating arbitrary designs using the …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


An Archimedes' Screw For Light, Emanuele Galiffi, Paloma A. Huidobro, J. B. Pendry Jan 2022

An Archimedes' Screw For Light, Emanuele Galiffi, Paloma A. Huidobro, J. B. Pendry

Advanced Science Research Center

An Archimedes’ Screw captures water, feeding energy into it by lifting it to a higher level. We introduce the first instance of an optical Archimedes’ Screw, and demonstrate how this system is capable of capturing light, dragging it and amplifying it. We unveil new exact analytic solutions to Maxwell’s Equations for a wide family of chiral space-time media, and show their potential to achieve chirally selective amplification within widely tunable parity-time-broken phases. Our work, which may be readily implemented via pump-probe experiments with circularly polarized beams, opens a new direction in the physics of time-varying media by merging the rising …


Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


Study Of Thick Indium Gallium Nitride Graded Structures For Future Solar Cell Applications, Manal Abdullah Aldawsari Dec 2021

Study Of Thick Indium Gallium Nitride Graded Structures For Future Solar Cell Applications, Manal Abdullah Aldawsari

Graduate Theses and Dissertations

Indium gallium nitride (InxGa1-xN) materials have held great potential for the optoelectronic industry due to their electrical and optical properties. The tunable band gap that can span the solar spectrum was one of the most significant features that attracted researchers’ attention. The band gap can be varied continuously from 0.77 eV for InN to 3.42 eV for GaN, covering the solar spectrum from near infrared to near ultraviolet. Additionally, it has a high absorption coefficient on the order of ∼105 cm−1, a direct band gap, high radiation resistance, thermal stability, and so on. Nevertheless, the epitaxial growth of high quality …


Fabrication And Characterization Of Photodetector Devices Based On Nanostructured Materials: Graphene And Colloidal Nanocrystals, Wafaa Gebril Jul 2021

Fabrication And Characterization Of Photodetector Devices Based On Nanostructured Materials: Graphene And Colloidal Nanocrystals, Wafaa Gebril

Graduate Theses and Dissertations

Photodetectors are devices that capture light signals and convert them into electrical signals. High performance photodetectors are in demand in a variety of applications, such as optical communication, security, and environmental monitoring. Among many appealing nanomaterials for novel photodetection devices, graphene and semiconductor colloidal nanocrystals are promising candidates because of their desirable and unique properties compared to conventional materials.

Photodetector devices based on different types of nanostructured materials including graphene and colloidal nanocrystals were investigated. First, graphene layers were mechanically exfoliated and characterized for device fabrication. Self-powered few layers graphene phototransistors were studied. At zero drain voltage bias and room …


Comparative Study Of Nano-Rod And Nano-Sphere Based Localized Surface Plasmon Resonance Refractive Index Biosensors, Mariam M. Moussilli M. M. Moussilli, Abdul Rahman El Falou Jun 2021

Comparative Study Of Nano-Rod And Nano-Sphere Based Localized Surface Plasmon Resonance Refractive Index Biosensors, Mariam M. Moussilli M. M. Moussilli, Abdul Rahman El Falou

BAU Journal - Science and Technology

Localized Surface Plasmon Resonance (LSPR) waves generated by the interaction of light with noble metal nanoparticles has been of great interest in recent years due to the high sensitivity of the extinction spectra of these nanoparticles to the medium's surrounding refractive index up to the atomic level.

In this article, we simulate the extinction spectra of noble metal sphere and rod nanoparticles in order to study the effect of the geometrical shape and size of the nanoparticle on the sensitivity and detection accuracy performance parameters of the extinction spectra. We also simulated the response of the sphere and rod nanoparticle's …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir Jan 2021

Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir

Publications and Research

There is growing interest in using strongly coupled organic microcavities to tune molecular dynamics, including the electronic and vibrational properties of molecules. However, very little attention has been paid to the utility of cavity polaritons as sensors for out-of-equilibrium phenomena, including thermal excitations. Here, we demonstrate that non-resonant infrared excitation of an organic microcavity system induces a transient response in the visible spectral range near the cavity polariton resonances. We show how these optical responses can be understood in terms of ultrafast heating of electrons in the metal cavity mirror, which modifies the effective refractive index and subsequently the strong …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete Nov 2020

Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete

FIU Electronic Theses and Dissertations

MagnetoElectric Nanoparticles (MENPs) are known to be a powerful tool for a broad range of applications spanning from medicine to energy-efficient electronics. MENPs allow to couple intrinsic electric fields in the nervous system with externally controlled magnetic fields. This thesis exploited MENPs to achieve contactless brain-machine interface (BMIs). Special electromagnetic devices were engineered for controlling the MENPs’ magnetoelectric effect to enable stimulation and recording. The most important engineering breakthroughs of the study are summarized below.

(I) Metastable Physics to Localize Nanoparticles: One of the main challenges is to localize the nanoparticles at any selected site(s) in the brain. The fundamental …


Nonlinear Nanophotonic Devices In The Ultraviolet To Visible Wavelength Range, Jinghan He, Hong Chen, Jin Hu, Jingan Zhou, Yingmu Zhang, Andre Kovach, Constantine Sideris, Mark C. Harrison, Yuji Zhao, Andrea M. Armani Jul 2020

Nonlinear Nanophotonic Devices In The Ultraviolet To Visible Wavelength Range, Jinghan He, Hong Chen, Jin Hu, Jingan Zhou, Yingmu Zhang, Andre Kovach, Constantine Sideris, Mark C. Harrison, Yuji Zhao, Andrea M. Armani

Engineering Faculty Articles and Research

Although the first lasers invented operated in the visible, the first on-chip devices were optimized for near-infrared (IR) performance driven by demand in telecommunications. However, as the applications of integrated photonics has broadened, the wavelength demand has as well, and we are now returning to the visible (Vis) and pushing into the ultraviolet (UV). This shift has required innovations in device design and in materials as well as leveraging nonlinear behavior to reach these wavelengths. This review discusses the key nonlinear phenomena that can be used as well as presents several emerging material systems and devices that have reached the …


Synthesis Of Cellulose Nanocrystal-Gold Nanoparticle Hybrid System For Surface Plasmon-Enhanced Property, Mahshid Iraniparast Dec 2019

Synthesis Of Cellulose Nanocrystal-Gold Nanoparticle Hybrid System For Surface Plasmon-Enhanced Property, Mahshid Iraniparast

Graduate Theses and Dissertations

Gold nanoparticles (AuNPs) have been brought to the forefront of various applications, ranging from theranostics, to organic photovoltaics, to biosensing owing to their localized surface plasmon resonance (LSPR) property. However, this property needs to be improved in order to allow for high sensitivity and quantitative detection of biomolecules. Hybrids of AuNPs with low-dielectric cellulose nanocrystal (CNCs) would yield enhancement of the LSPR property, which is driven by the confinement of electron oscillation at their interfaces. This study proposed a seed-mediated growth method to synthesize hybrids of CNCs-AuNPs. Sulfate groups on the surface of CNCs served as the sites for the …


Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Graduate Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties. …


Engineering Plasmonic Nanostructures For Light Management And Sensing, Sujan Phani Kumar Kasani Jan 2019

Engineering Plasmonic Nanostructures For Light Management And Sensing, Sujan Phani Kumar Kasani

Graduate Theses, Dissertations, and Problem Reports

The two major global problems are to provide health safety and to meet energy demands for ever growing population on a large scale. The study of light interaction with nanostructures has shown a promising solution in improving the fields of bio-sensor and solar energy devices which addresses above mentioned two major global problems. Nanostructures have tunable physicochemical properties such as light absorption, electrical and thermal properties unlike bulk materials, which gives an advantage in applications like bio-sensing and energy harvesting devices. The development of nanofabrication techniques along with the discovery of Surface Enhanced Raman Scattering (SERS) and Plasmon Enhanced Fluorescence …


Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman Dec 2018

Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman

Graduate Theses and Dissertations

Technology based on the interaction between light and matter has entered something of a renaissance over the past few decades due to improved control over the creation of nanoscale patterns. Tunable nanofabrication has benefitted optical sensing, by which light is used to detect the presence or quantity of various substances. Through methods such as Raman spectroscopy, the optical spectra of solid, liquid, or gaseous samples act as fingerprints which help identify a single type of molecule amongst a background of potentially many other chemicals. This technique therefore offers great benefit to applications such as biomedical sensors, airport security, industrial waste …


Hyperspectral Imaging For Characterizing Single Plasmonic Nanostructure And Single-Cell Analysis, Nishir Sanatkumar Mehta Oct 2018

Hyperspectral Imaging For Characterizing Single Plasmonic Nanostructure And Single-Cell Analysis, Nishir Sanatkumar Mehta

LSU Master's Theses

Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as photovoltaics, catalyst, biosensors DNA interactions, protein detections, hotspot of surface-enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. Silver nanocubes with significant spectral signatures between 400-700 nm are observed in this experimental research. Whereas study of single cells will enable the analysis of cell-to-cell variations within a heterogeneous population. These variations are important for further analysis and understanding of disease propagation, drug development, stem cell differentiation, embryos development, and how cells respond to each other and their environment. Adipose-derived mesenchymal stem cells possess the …


Spice Based Compact Model For Electrical Switching Of Antiferromagnet, Xe Jin Chan, Jan Kaiser, Pramey Upadhyaya Aug 2018

Spice Based Compact Model For Electrical Switching Of Antiferromagnet, Xe Jin Chan, Jan Kaiser, Pramey Upadhyaya

The Summer Undergraduate Research Fellowship (SURF) Symposium

A simulation framework that can model the behavior of antiferromagnets (AFMs) is essential to building novel high-speed devices. The electrical switching of AFMs allows for high performance memory applications. With new phenomena in spintronics being discovered, there is a need for flexible and expandable models. With that in mind, we developed a model for AFMs which can be used to simulate AFM switching behavior in SPICE. This approach can be modified for adding modules, keeping pace with new developments. The proposed AFM switching model is based on the Landau-Lifshitz-Gilbert equation (LLG). LLG along with an exchange coupling module is implemented …


Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Graduate Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable …


Plasmonic Structures For Subwavelength Guiding And Enhanced Light-Matter Interactions, Amirreza Mahigir Apr 2018

Plasmonic Structures For Subwavelength Guiding And Enhanced Light-Matter Interactions, Amirreza Mahigir

LSU Doctoral Dissertations

In this dissertation we design and analyze nanostructures for subwavelength guiding and enhanced light-matter interactions.

We first investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. These structures are capable of guiding and manipulating light in deep-subwavelength volumes. We show that three-dimensional plasmonic coaxial waveguides offer a platform for practical realization of deep-subwavelength optical waveguides.

We then introduce compact wavelength-scale slit-based structures for coupling free space light into the fundamental mode of plasmonic coaxial waveguides. We consider single-, double-, and triple-slit structures optimized at the …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber Nov 2017

Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber

USF Tampa Graduate Theses and Dissertations

In the nanoscale metrology industry, there is a need for low-cost instruments, which have the ability to probe the structrure and elemental composition of thin films. This dissertation, describes the research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source. Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL. To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included experiments to create structures in materials, which were intended to suppress SE backgound noise in …


Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami Sep 2017

Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami

Physics & Astronomy ETDs

Nano-scale optoelectronic devices have gained significant attention in recent years. Among these devices are semiconductor nanowires, whose dimeters range from 100 to 200 nm. Semiconductor nanowires can be utilized in many different applications including light-emitting diodes and laser diodes. Higher surface to volume ratio makes nanowire-based structures potential candidates for the next generation of photodetectors, sensors, and solar cells. Core-shell light-emitting diodes based on selective-area growth of gallium nitride (GaN) nanowires provide a wide range of advantages. Among these advantages are access to non-polar m-plane sidewalls, higher active region area compared to conventional planar structures, and reduction of threading …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man Aug 2016

Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man

Open Access Dissertations

Research on nanophotonic structures for three application areas is described, a near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting homogenizable magnetic properties at infrared frequencies. The graphene stack can be treated as a effective, homogenized medium that can be designed to reflect little light and absorb an astoundingly high amount per unit thickness, making it an ideal dark material and providing a new avenue for photonic devices based on two-dimensional materials. Another material stack arrangement with thin layers of metal and insulator forms a multi-cavity filter that …