Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Electromagnetics and Photonics

Photophoretic Optical Trapping, Essa Ababseh Jun 2023

Photophoretic Optical Trapping, Essa Ababseh

Electrical Engineering

Photophoretic Optical Trapping (POT) is a relatively new concept in the field of optics which has potential application in 3D display. The POT is realized by confining a particle within a very small location of the optical system, mostly around the focus. The particle, if captured by the beam, has the potential to print visible 3D images in free space. Our POT system is encapsulated by an acrylic enclosure, which also incorporates a biconvex lens as well as an adjustable focus laser module. Particles are released around the top of the lens’ focal point until the captured particle can be …


Optical Control System For Atmospheric Turbulence Mitigation, Martyn Lemon Dec 2022

Optical Control System For Atmospheric Turbulence Mitigation, Martyn Lemon

All Theses

Propagation of laser light is distorted in the presence of atmospheric turbulence. This poses an issue for sensing, free-space optical communications, and transmission of power. With an ever-increasing demand for high-speed data communications, particularly between satellites, unmanned vehicles, and other systems that benefit from a point-to-point link, this issue is critical for the field. A variety of methods have been proposed to circumvent this issue. Some major categories include the manipulation of the light’s structure, an adaptive scheme at the optical receiver, scanning mirror systems, or a transmission of simultaneous signals with a goal to improve robustness.

There is an …


Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers Jun 2022

Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers

Electrical Engineering

This product is a photophoretic trapping system which allows varying focal lengths to test which focal lengths are possible for trapping toner particles. This system establishes that there exists a maximum trapping distance limitation and is the first time the effect of focal length is studied in a photophoretic trapping system. Increasing photophoretic trapping focal length is necessary for improving this technology as a 3D display. The 3D imaging technology is realized by dragging a microscopic (micrometer-scale) particles with a laser beam to trace an image. This technology can display fully colored and high-resolution 3D images visible from almost any …


Linear And Nonlinear Optical Effects In High Carrier Concentration Oxides And Nitrides At Epsilon-Near-Zero, Ray Secondo Jan 2021

Linear And Nonlinear Optical Effects In High Carrier Concentration Oxides And Nitrides At Epsilon-Near-Zero, Ray Secondo

Theses and Dissertations

Nonlinear optics has been an important method for achieving ultrafast light manipulation. Recently, ENZ material have gained interest due to inherent advantages such as slow light, improved confinement, and ideal relaxation times, the nonlinear response of these materials, such as the intensity-dependent-refractive-index, are ultra-large yet remain ultra-fast. This experimental discovery of epsilon-near-zero enhancement has thus opened new avenues in nonlinear optics research in recent years, and while experiments have continued to progress a theoretical understanding of the processes and origins of nonlinear optical enhancement at epsilon-near-zero has lagged.

To fill this gap, the work herein focuses on uncovering the mechanisms …


Saturation Behaviors In Deep Turbulence, Jeffrey R. R. Beck Jan 2021

Saturation Behaviors In Deep Turbulence, Jeffrey R. R. Beck

Dissertations, Master's Theses and Master's Reports

Distributed-volume atmospheric turbulence near the ground significantly limits the performance of incoherent imaging and coherent beam projection systems operating over long horizontal paths. Defense, military and civilian surveillance, border security, and target identification systems are interested in terrestrial imaging and beam projection over very long horizontal paths, but atmospheric turbulence can blur the imagery and aberrate the laser beam such that they are beyond usefulness. While many post-processing and adaptive optics techniques have been developed to mitigate the effects of turbulence, many of these techniques do not work as expected in stronger volumetric turbulence, or in many cases don't work …


Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey Oct 2019

Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey

Faculty Publications

Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated …


Enhancing The Resolution Of Imaging Systems By Spatial Spectrum Manipulation, Wyatt Adams Jan 2019

Enhancing The Resolution Of Imaging Systems By Spatial Spectrum Manipulation, Wyatt Adams

Dissertations, Master's Theses and Master's Reports

Much research effort has been spent in the 21st century on superresolution imaging techniques, methods which can beat the diffraction limit. Subwavelength composite structures called ``metamaterials" had initially shown great promise in superresolution imaging applications in the early 2000s, owing to their potential for nearly arbitrary capabilities in controlling light. However, for optical frequencies they are often plagued by absorption and scattering losses which can decay or destroy their interesting properties. Similar issues limit the application of other superresolution devices operating as effective media, or metal films that can transfer waves with large momentum by supporting surface plasmon polaritons. In …


Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar Jun 2018

Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar

Cappa Publications

Using a spiral microaxicon with the topological charge 2 and NA = 0.6 operating at a 532-nm wavelength and fabricated by electron-beam lithography, we experimentally demonstrate the rotation of a two-petal laser beam in the near field (several micrometers away from the axicon surface). The estimated rotation rate is 55 °/mm and linearly dependent on the on-axis distance, with the theoretical rotation rate being 53 °/mm. The experimentally measured rotation rate is found to be linear and coincident with the simulation results only on the on-axis segment from 1.5 to 3 mm. The experimentally measured rotation rate is 66 °/mm …


Polymer Waveguide Manufacturing And Printed Circuit Board Integration, Brandon Swatowski Jan 2017

Polymer Waveguide Manufacturing And Printed Circuit Board Integration, Brandon Swatowski

Dissertations, Master's Theses and Master's Reports

In this age of ever increasing data rates in communication systems, optics are becoming more commonplace for long length (>10m) signal transmission in High Performance Computing (HPC) systems due to their bandwidth capabilities which are higher than their electrical counterparts. In these optical based communication systems, Vertical Cavity Surface Emitting Lasers (VCSELs) are the most commonly used communications lasing medium for multimode fiber applications. These lasers are active in the 850 nm region, with speeds commonly at 10 Gbps/channel. VCSEL vendors are now commercializing lasers at 25 Gbps/channel as well, with research groups actively pursuing rates beyond 40 Gbps/channel, …


Wavelength Accuracy Study For High-Density Fiber Bragg Grating Sensor Systems Using A Rapidly-Swept Akinetic-Laser Source, Jacob Egorov Jun 2016

Wavelength Accuracy Study For High-Density Fiber Bragg Grating Sensor Systems Using A Rapidly-Swept Akinetic-Laser Source, Jacob Egorov

Master's Theses

This thesis studies the center wavelength accuracy of a Fiber Bragg Grating Sensor system that has a large number of sensor elements both as a function of wavelength and as a function of position. Determining the center wavelength of each of the fiber optic sensors is a critical parameter that ultimately determines sensor accuracy. The high density environment can result in degradation of accuracy of the center wavelength measurement. This thesis aims to quantify this measurement error both with theoretical and experimental studies.

There are many sensing applications where optical fiber sensors are preferred over electrical sensors, such as the …


Optical Propagation Of Self-Sustaining Wavefronts And Nonlinear Dynamics In Parabolic Multimode Fibers, Matthew Mills Jan 2015

Optical Propagation Of Self-Sustaining Wavefronts And Nonlinear Dynamics In Parabolic Multimode Fibers, Matthew Mills

Electronic Theses and Dissertations

The aim of this thesis is to introduce my work which has generally been focused on optical wavefronts that have the unusual property of resisting commonplace phenomena such as diffraction and dispersion. Interestingly, these special beams are found both in linear and nonlinear situations. For example, in the linear regime, localized spatio-temporal waves which resemble the spherical harmonic symmetries of the hydrogen quantum orbitals can simultaneously negotiate both diffractive and dispersive effects. In the nonlinear regime, dressed optical filaments can be arranged to propagate multi-photon produced plasma channels orders of magnitude longer than expected. The first portion of this dissertation …


Fast-Response Liquid Crystals For Photonic And Display Applications, Jie Sun Jan 2013

Fast-Response Liquid Crystals For Photonic And Display Applications, Jie Sun

Electronic Theses and Dissertations

Liquid crystal devices are attractive for many applications such as information displays, spatial light modulators and adaptive optics, because their optical properties are electrically tunable. However, response time of liquid crystal devices is a serious concern for many applications especially for those who require large phase modulation (≥2π). This is because a thick LC layer is usually needed to achieve a large phase shift while the response time of a nematic LC is highly determined by the cell gap.


Optically Isotropic Liquid Crystals For Display And Photonic Applications, Jin Yan Jan 2013

Optically Isotropic Liquid Crystals For Display And Photonic Applications, Jin Yan

Electronic Theses and Dissertations

For the past few decades, tremendous progress has been made on liquid crystal display (LCD) technologies in terms of stability, resolution, contrast ratio, and viewing angle. The remaining challenge is response time. The state-of-the-art response time of a nematic liquid crystal is a few milliseconds. Faster response time is desirable in order to reduce motion blur and to realize color sequential display using RGB LEDs, which triples the optical efficiency and resolution density. Polymer-stabilized blue phase liquid crystal (PS-BPLC) is a strong candidate for achieving fast response time because its self-assembled cubic structure greatly reduces the coherence length. The response …


Inverse Problems In Multiple Light Scattering, John Broky Jan 2013

Inverse Problems In Multiple Light Scattering, John Broky

Electronic Theses and Dissertations

The interaction between coherent waves and material systems with complex optical properties is a complicated, deterministic process. Light that scatters from such media gives rise to random fields with intricate properties. It is common perception that the randomness of these complex fields is undesired and therefore is to be removed, usually through a process of ensemble averaging. However, random fields emerging from light matter interaction contain information about the properties of the medium and a thorough analysis of the scattered light allows solving specific inverse problems. Traditional attempts to solve these kinds of inverse problems tend to rely on statistical …


Metrology Of Volume Chirped Bragg Gratings Recorded In Photo-Thermo-Refractive Glass For Ultrashort Pulse Stretching And Compressing, Christopher Lantigua Jan 2013

Metrology Of Volume Chirped Bragg Gratings Recorded In Photo-Thermo-Refractive Glass For Ultrashort Pulse Stretching And Compressing, Christopher Lantigua

Electronic Theses and Dissertations

Chirped Bragg gratings (CBGs) recorded in photo-thermo-refractive (PTR) glass provide a very efficient and robust way to stretch and compress ultra-short laser pulses. These gratings offer the ability to stretch pulses from hundreds of femtoseconds, to the order of 1 ns and then recompress them. However, in order to achieve pulse stretching of this magnitude, 100 mm thick CBGs are needed. Using these CBGs to both stretch, and re-compress the pulse thus requires propagation through 200 mm of optical glass. This therefore demands perfect control of the glass homogeneity, as well as the holographic recording process of the CBG. In …


Mesoscale Light-Matter Interactions, Kyle Douglass Jan 2013

Mesoscale Light-Matter Interactions, Kyle Douglass

Electronic Theses and Dissertations

Mesoscale optical phenomena occur when light interacts with a number of different types of materials, such as biological and chemical systems and fabricated nanostructures. As a framework, mesoscale optics unifies the interpretations of the interaction of light with complex media when the outcome depends significantly upon the scale of the interaction. Most importantly, it guides the process of designing an optical sensing technique by focusing on the nature and amount of information that can be extracted from a measurement. Different aspects of mesoscale optics are addressed in this dissertation which led to the solution of a number of problems in …


High Temperature Performance Of An Optical Microfibre Coupler And Its Potential Use As A Sensor, Pengfei Wang, Ming Ding, Gilberto Bramilla, Yuliya Semenova, Qiang Wu, Gerald Farrell Jan 2012

High Temperature Performance Of An Optical Microfibre Coupler And Its Potential Use As A Sensor, Pengfei Wang, Ming Ding, Gilberto Bramilla, Yuliya Semenova, Qiang Wu, Gerald Farrell

Articles

The dependence of the transmission spectrum of an optical microfibre coupler at high temperatures is investigated experimentally. Results show a temperature sensitivity up to 36.59 pm/oC at a taper waist outer diameter of 2.5 μm; such a temperature-dependent performance can be utilized for temperature sensing up to 1000oC.


Electromagnetic Propagation Anomalies In Waveguiding Structures And Scattering Systems, Alessandro Salandrino Jan 2011

Electromagnetic Propagation Anomalies In Waveguiding Structures And Scattering Systems, Alessandro Salandrino

Electronic Theses and Dissertations

The effects related to diffraction and interference are ubiquitous in phenomena involving electromagnetic wave propagation, and are accurately predicted and described within the framework of classical electrodynamics. In the vast majority of the cases the qualitative features of the evolution of a propagating wave can be inferred even without detailed calculations. A field distribution will spread upon propagation, will accumulate phase along the direction of power flow, will exert mechanical forces upon scattering objects in the direction of propagation etc. When such predictions fail, counterintuitive effects and new functionalities can be engineered. In this work a series of exceptional cases …


Optical Wave Propagation In Discrete Waveguide Arrays, Jared Hudock Jan 2005

Optical Wave Propagation In Discrete Waveguide Arrays, Jared Hudock

Electronic Theses and Dissertations

The propagation dynamics of light in optical waveguide arrays is characteristic of that encountered in discrete systems. As a result, it is possible to engineer the diffraction properties of such structures, which leads to the ability to control the flow of light in ways that are impossible in continuous media. In this work, a detailed theoretical investigation of both linear and nonlinear optical wave propagation in one- and two-dimensional waveguide lattices is presented. The ability to completely overcome the effects of discrete diffraction through the mutual trapping of two orthogonally polarized coherent beams interacting in Kerr nonlinear arrays of birefringent …


Polarimetric Characterization Of Random Electromagnetic Beams And Applications, Mircea Mujat Jan 2004

Polarimetric Characterization Of Random Electromagnetic Beams And Applications, Mircea Mujat

Electronic Theses and Dissertations

Polarimetry is one of the principal means of investigating the interaction of light with matter. Theoretical models and experimental techniques are presented in this dissertation for polarimetric characterization of random electromagnetic beams and of signatures of random media in different scattering regimes and configurations. The degree of polarization rather than the full description of the state of polarization is of interest in multiple scattering and free space propagation where the statistical nature and not the deterministic component of light bears the relevant information. A new interferometric technique for determining the degree of polarization by measuring the intensity fluctuations in a …


Stable Spatial Solitons In Semiconductor Optical Amplifiers, Erdem Ultanir Jan 2004

Stable Spatial Solitons In Semiconductor Optical Amplifiers, Erdem Ultanir

Electronic Theses and Dissertations

A spatial soliton is a shape invariant self guided beam of light or a self induced waveguide. Spatial solitons appear as a result of the balance of diffraction and nonlinear focusing in a system. They have been observed in many different conservative media in the last couple of years. Solitons are ubiquitous, because of the probability of using their interactions in optical data processing, communications etc. Up to now due to the power required to generate the solitons, and the response times of the soliton supporting media, these special waves of nature could not penetrate the applications arena. Semiconductors, with …


Chemical Structure - Nonlinear Optical Property Relationships For A Series Of Two-Photon Absorbing Fluorene Molecules, Joel Mccajah Hales Jan 2004

Chemical Structure - Nonlinear Optical Property Relationships For A Series Of Two-Photon Absorbing Fluorene Molecules, Joel Mccajah Hales

Electronic Theses and Dissertations

This dissertation reports on the investigation of two-photon absorption (2PA) in a series of fluorenyl molecules. Several current and emerging technologies exploit this optical nonlinearity including two-photon fluorescence imaging, three-dimensional microfabrication, site-specific photodynamic cancer therapy and biological caging studies. The two key features of this nonlinearity which make it an ideal candidate for the above applications are its quadratic dependence on the incident irradiance and the improved penetration into absorbing media that it affords. As a consequence of the burgeoning field which exploits 2PA, it is a goal to find materials that exhibit strong two-photon absorbing capabilities. Organic materials are …


Evaluation Of The Photo-Induced Structural Mechanisms In Chalcogenide, Cedric Lopez Jan 2004

Evaluation Of The Photo-Induced Structural Mechanisms In Chalcogenide, Cedric Lopez

Electronic Theses and Dissertations

Chalcogenide glasses and their use in a wide range of optical, electronic and memory applications, has created a need for a more thorough understanding of material property variation as a function of composition and in geometries representative of actual devices. This study evaluates compositional dependencies and photo-induced structural mechanisms in As-S-Se chalcogenide glasses. An effective fabrication method for the reproducible processing of bulk chalcogenide materials has been demonstrated and an array of tools developed, for the systematic characterization of the resulting material's physical and optical properties. The influence of compositional variation on the physical properties of 13 glasses within the …


Dispersion-Managed Breathing-Mode Semiconductor Mode-Locked Ring Laser, Bojan Resan Jan 2004

Dispersion-Managed Breathing-Mode Semiconductor Mode-Locked Ring Laser, Bojan Resan

Electronic Theses and Dissertations

A novel dispersion-managed breathing-mode semiconductor mode-locked ring laser is developed. The "breathing-mode" designation derives from the fact that intracavity pulses are alternately stretched and compressed as they circulate around the ring resonator. The pulses are stretched before entering the semiconductor gain medium to minimize the detrimental strong integrating self-phase modulation and to enable efficient pulse amplification. Subsequently compressed pulses facilitate bleaching the semiconductor saturable absorber. The intracavity pulse compression ratio is higher than 50. Down chirping when compared to up chirping allows broader mode-locked spectra and shorter pulse generation owing to temporal and spectral semiconductor gain dynamics. Pulses as short …