Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

Biological Engineering

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 57

Full-Text Articles in Biomedical Engineering and Bioengineering

Assessing Biofiltration Without Ozonation For Removal Of Trihalomethane Precursors In Drinking Water At The Beaver Water District Drinking Water Treatment Plant, Sana Ajaz Dec 2018

Assessing Biofiltration Without Ozonation For Removal Of Trihalomethane Precursors In Drinking Water At The Beaver Water District Drinking Water Treatment Plant, Sana Ajaz

Graduate Theses and Dissertations

Biofiltration without pre-ozonation has the capability to remove natural organic matter (NOM) fractions that serve as precursors of disinfection byproducts (DBPs), which include the four regulated trihalomethanes (THMs) and dichloroacetonitrile (DCAN). Rapid small-scale column tests (RSSCTs) and Pilot Plant filters operated at empty-bed contact times (EBCTs) of 4, 8, and 16 minutes were used to evaluate the performance of nutrient-amended (free ammonia and phosphorus) biofiltration for THM and DCAN precursor removal, as measured using formation potential (FP) tests. NOM surrogates – which include dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA254) and fluorescence-PARAFAC components – were measured weekly throughout the …


Production And Biocompatibility Of Spider Silk Proteins In Goat Milk, Richard E. Decker Jr Dec 2018

Production And Biocompatibility Of Spider Silk Proteins In Goat Milk, Richard E. Decker Jr

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Due to its strength, flexibility, and biocompatibility, spider silk is a highly appealing material for applications in the medical field. Unfortunately, natural spider silk is difficult to obtain in large quantities because spiders are territorial and cannibalistic, making them impractical to farm. Synthetic spider silk proteins produced by transgenic hosts such as bacteria and goats have made it possible to obtain the quantities of spider silk needed to study it more fully and to investigate its potential uses. The spider silk proteins produced in our laboratory do not have an optimal purification method to remove all of the non-biocompatible contaminants …


Identification And Engineering Of Nonribosomal Peptide Biosynthetic Systems, Fuchao Xu Dec 2018

Identification And Engineering Of Nonribosomal Peptide Biosynthetic Systems, Fuchao Xu

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This research focuses on the understanding and engineering of nonribosomal peptide biosynthetic pathways in Streptomyces coelicolor CH999, Escherichia coli BAP1 and Saccharomyces cerevisiae BJ5464-NpgA. The biosynthetic systems of indigoidine from bacteria and beauvericin/bassianolide from fungi were studied in this research. The production of these valuble products was significantly increased by enhancing their synthetic pathway with metabolic engineering approaches.

Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. Indigo is a dark blue crystalline powder and has …


Computational Investigation Of The Interactions Between Bioactive Compounds And Biological Assemblies, Tye D. Martin Nov 2018

Computational Investigation Of The Interactions Between Bioactive Compounds And Biological Assemblies, Tye D. Martin

Shared Knowledge Conference

Design of small molecules is an ongoing focus for developing agents against pathogenic viruses and bacteria that are threats to worldwide health. Viruses such as Zika feature assemblies of repeat peptide subunits or capsid proteins which are potential targets for antiviral compounds. Other protein assemblies are implicated in pathology of Alzheimer’s Disease (AD) and additional neurodegenerative diseases characterized by large assemblies of misfolded proteins such as amyloid-beta (Aβ) and tau. Recent studies on a class of conjugated polyelectrolytes (CPEs) with phenylene ethynylene moieties and charged functional groups have shown potential both as bioactive antimicrobials and theragnostic sensing agents for tracking …


Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz Nov 2018

Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz

Doctoral Dissertations

Breast cancer is plagued by two key clinical challenges; drug resistance and metastasis. Most work to date probes these events on an extremely rigid plastic surface, which recapitulates few aspects of these processes in humans. A malignant cell first resides in breast tissue, then likely travels to the bone, brain, liver, or lung, each of which has a distinct mechanical and biochemical profile. Cells transmit mechanical forces into intracellular tension and biochemical signaling events, and here we hypothesize that this mechanotransduction influences drug response, growth, and migration. To probe the impact of extracellular matrix on drug resistance, we defined a …


Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan Oct 2018

Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan

Biological Engineering Faculty Publications

A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6'-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8'-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane and 1,3-dihydroxyphenyl-5-cis-10'-heptadecene, respectively, …


Novel Devices For Studying Acute And Chronic Mechanical Stress In Retinal Pigment Epithelial Cells, Farhad Farjood, Elizabeth Vargis Oct 2018

Novel Devices For Studying Acute And Chronic Mechanical Stress In Retinal Pigment Epithelial Cells, Farhad Farjood, Elizabeth Vargis

Biological Engineering Faculty Publications

Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration (AMD). Overexpression of vascular endothelial growth factor (VEGF), a potent angiogenic protein, by retinal pigment epithelial (RPE) cells is a key stimulator of CNV. Mechanical stress occurs during different stages of AMD and is a possible inducer of VEGF expression in RPE cells. However, robust and realistic approaches to studying acute and chronic mechanical stress under various AMD stages do not exist.The majority of previous work has studied cyclic stretching of RPE cells grown on flexible substrates, but an ideal model must be able to …


The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


Hydrodeoxygenation Of Aqueous Phase Catalytic Pyrolysis Oil To Liquid Hydrocarbons Using Multi-Functional Nickel Catalyst, Hossein Jahromi, Foster A. Agblevor Sep 2018

Hydrodeoxygenation Of Aqueous Phase Catalytic Pyrolysis Oil To Liquid Hydrocarbons Using Multi-Functional Nickel Catalyst, Hossein Jahromi, Foster A. Agblevor

Biological Engineering Faculty Publications

Herein we investigated the hydrodeoxygenation (HDO) of aqueous phase pinyon-juniper catalytic pyrolysis oil (APPJCPO) using a new multifunctional red mud-supported nickel (Ni/RM) catalyst. The organic liquid yield after HDO of APPJCPO using 30 wt. % Ni/RM at reaction temperature of 350 °C was 47.8 wt. % with oxygen content of 1.14 wt. %. The organic liquid fraction consisted of aliphatics, aromatics, and alkylated aromatic hydrocarbons as well as small amounts of oxygenates. The RM support catalyzed ketonization of carboxylic acids. The Ni metal catalyzed partial reduction of oxygenates that underwent carbonyl alkylation with aldehydes and ketones on the RM. Catalyst …


An Efficient Process For Co-Production Of Γ-Aminobutyric Acid And Probiotic Bacillus Subtilis Cells, Hongbo Wang, Jinge Huang, Lei Sun, Fuchao Xu, Wei Zhang, Jixun Zhan Sep 2018

An Efficient Process For Co-Production Of Γ-Aminobutyric Acid And Probiotic Bacillus Subtilis Cells, Hongbo Wang, Jinge Huang, Lei Sun, Fuchao Xu, Wei Zhang, Jixun Zhan

Biological Engineering Faculty Publications

This study was to establish an integrated process for the co-production of γ-aminobutyric acid (GABA) and live probiotics. Six probiotic bacteria were screened and Bacillus subtilis ATCC 6051 showed the highest GABA-producing capacity. The optimal temperature and initial pH value for GABA production in B. subtilis were found to be 30 °C and 8.0, respectively. A variety of carbon and nitrogen sources were tested, and potato starch and peptone were the preferred carbon and nitrogen sources for GABA production, respectively. The concentrations of carbon source, nitrogen source and substrate (sodium L-glutamate) were then optimized using the response surface methodology. The …


Microfluidic Electrical Impedance Spectroscopy, John J. Foley Sep 2018

Microfluidic Electrical Impedance Spectroscopy, John J. Foley

Master's Theses

The goal of this study is to design and manufacture a microfluidic device capable of measuring changes in impedance valuesof microfluidic cell cultures. Tocharacterize this, an interdigitated array of electrodes was patterned over glass, where it was then bonded to a series of fluidic networks created in PDMS via soft lithography. The device measured ethanol impedance initially to show that values remain consistent over time. Impedance values of water and 1% wt. saltwater were compared to show that the device is able to detect changes in impedance, with up to a 60% reduction in electrical impedance in saltwater. Cells were …


Rapid Sample Processing Of Foodborne Pathogens Using Cross-Flow Microfiltration, Casey Bomrad, Michael R. Ladisch, Linda Liu, Jessica Lynn Zuponcic, Eduardo Ximenes Aug 2018

Rapid Sample Processing Of Foodborne Pathogens Using Cross-Flow Microfiltration, Casey Bomrad, Michael R. Ladisch, Linda Liu, Jessica Lynn Zuponcic, Eduardo Ximenes

The Summer Undergraduate Research Fellowship (SURF) Symposium

Foodborne illnesses are a prominent issue, causing 48 million illnesses annually. The Escherichia coli O157:H7 outbreak in romaine lettuce is a recent example. The source of the pathogen was contaminated irrigation water. The most common methods for detecting foodborne pathogens involve cultivation and enrichment of food samples. The enrichment steps are time-consuming, taking 24 to 72 hours to complete. Our study aims to accelerate irrigation water sample preparation for pathogenic microorganism fast detection through cross-flow microfiltration. This is accomplished by a device called a continuous cell concentration and recovery device (C3D). The C3D uses cross-flow microfiltration in a hollow fiber …


Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon Aug 2018

Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microbes can be used to produce valuable drugs, chemicals, and biofuels, but their potential has not been fully realized due to low production yields. To improve biomanufacturing processes and yield, we are developing novel, transcriptional regulators using biosynthesis technology in order to improve cellular health and overall production. Our regulator contains elastin-like polypeptides (ELPs), which make ideal sensors since they exhibit a sharp, inverse phase transition to indicators of cell health such as intracellular pH and ionic strength, and external stimuli such as temperature. We hypothesize that ELP can be fused to transcription factors to control expression of target genes. …


Cost-Effective Paper-Based Diagnostic Using Split Proteins To Detect Yeast Infections, Zachary R. Berglund, Kevin V. Solomon, Mohit S. Verma, Moiz Rasheed, Zachary Hartley, Kevin Fitzgerald, Kok Zhi Lee, Janice Chan, Julianne Dejoie, Makayla Schacht, Alex Zavala Aug 2018

Cost-Effective Paper-Based Diagnostic Using Split Proteins To Detect Yeast Infections, Zachary R. Berglund, Kevin V. Solomon, Mohit S. Verma, Moiz Rasheed, Zachary Hartley, Kevin Fitzgerald, Kok Zhi Lee, Janice Chan, Julianne Dejoie, Makayla Schacht, Alex Zavala

The Summer Undergraduate Research Fellowship (SURF) Symposium

The common yeast infection, vulvovaginal candidiasis, affects three out of four women throughout their lifetime and can be spread to their child in the form of oral candidiasis (thrush). This disease is caused by the fungal pathogen Candida albicans, which is also a major cause of systemic candidiasis, a rarer but deadly disease with up to a 49% lethality rate. Current widely-used diagnostic methods include cell cultures, pH tests, and antibody detection, to assist effective treatment. Despite availability of various diagnostic methods, there is no inexpensive, rapid, and accurate way to detect C. albicans infection. This project aims to …


Studying The Applicability Of Biostimulated Calcite Precipitation In Stabilizing Expansive Soils, Md Touhidul Islam Aug 2018

Studying The Applicability Of Biostimulated Calcite Precipitation In Stabilizing Expansive Soils, Md Touhidul Islam

Boise State University Theses and Dissertations

Of the four types of soils, clays are often associated with issues related to low bearing capacity, high compressibility, swelling and shrinking nature. For example, expansive soils swell and shrink with moisture ingress and digress and are prevalent in several parts of the world causing billions of dollars in damages annually to various civil infrastructures. Several ground improvement techniques such as chemical stabilization, deep soil mixing, moisture barriers, and others were employed to counteract these soils. However, these methods are impractical in certain situations and unsustainable in others due to their economic and environmental impacts. Microbiological treatment of soils could …


Development And Characterization Of Aqueous-Based Recombinant Spider Silk Protein Biomaterials With Investigations Into Potential Applications, Thomas I. Harris Aug 2018

Development And Characterization Of Aqueous-Based Recombinant Spider Silk Protein Biomaterials With Investigations Into Potential Applications, Thomas I. Harris

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spider silks are incredible natural materials that possess desirable combinations of strength, elasticity, weight, and robustness. Other properties such as biocompatibility and biodegradability further increase the worth of these materials. The possibility of farming spiders is impractical due to spiders’ natural behaviors. Modern biotechnologies have allowed for recombinant spider silk proteins (rSSps) to be produced without the use of spiders. However, the features responsible for spider silks impressive properties can cause difficulties with producing silk materials. A recently developed water-based and biomimetic solvation method has provided a solution to such difficulties and has also led to novel silk biomaterials. Most …


Evaluation Of A Solar Powered Variable Flow Tail Water Recovery System For Furrow Irrigation, Vaishali Kandpal Aug 2018

Evaluation Of A Solar Powered Variable Flow Tail Water Recovery System For Furrow Irrigation, Vaishali Kandpal

Graduate Theses and Dissertations

Furrow irrigation is a very common irrigation method for growing crops like soybean, cotton and corn in Arkansas. A major portion of this irrigation water is lost as runoff from the field significantly reducing the irrigation application efficiency. There are various methods of improving irrigation efficiency and one of the methods is using tail-water recovery. A tail-water recovery system utilizes tail-water recovery ditches or pits to collect tail-water which can be re-used for irrigation. However, this method is very labor intensive and has been found to be economically non-feasible for some farms in the past research studies. In order to …


Biomass And Phycocyanin From Oil And Natural Gas Extraction Produced Water Utilizing A Cyanobacteria Dominated Rotating Algal Biofilm Reactor (Rabr), Jonathan L. Wood Aug 2018

Biomass And Phycocyanin From Oil And Natural Gas Extraction Produced Water Utilizing A Cyanobacteria Dominated Rotating Algal Biofilm Reactor (Rabr), Jonathan L. Wood

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The production of cyanobacterial biofilm biomass and phycocyanin from Rotating Algal Biofilm Reactors utilizing undiluted produced water from oil and natural gas extraction as a culture medium was investigated in this study. Produced water is the largest waste stream generated by the oil and natural gas industries and represents a large volume of non-potable water that may be available for algae culture with minimal impact on freshwater resources. Combining the use of produced wastewater as culture medium with the production of high value algal pigments, such as phycocyanin, may increase the economic viability of algae culture and wastewater purification. High …


Development And Optimization Of A Produced Water, Biofilm Based Microalgae Cultivation System For Biocrude Conversion With Hydrothermal Liquefaction, Benjamin L. Peterson Aug 2018

Development And Optimization Of A Produced Water, Biofilm Based Microalgae Cultivation System For Biocrude Conversion With Hydrothermal Liquefaction, Benjamin L. Peterson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Extraction of oil and gas in Utah’s Uintah Basin results in large quantities of wastewater, or produced water, with nutrients and residual organic chemical that represent a significant resource for producing energy-related and value-added products. Produced water was obtained as a biomass producing nutrient source from industries operating in Utah’s Uintah Basin. Within the Uintah Basin (defined as Uintah and Duchesne Counties within Utah) approximately 93 million barrels of water were produced in 2013 while only 11% of the water was disposed of through evaporation, with the national average at 2%. The rest is reinjected into the subsurface.

The goal …


Novel Methods To Produce Large Recombinant Spider Silk Proteins Via Polymerization, Nathan L. Hebert Aug 2018

Novel Methods To Produce Large Recombinant Spider Silk Proteins Via Polymerization, Nathan L. Hebert

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spider silk has long been a subject of scientific research due to its remarkable mechanical properties. Until recently, there has been no way to effectively obtain spider silk except by harvesting it from individual spiders. With advances in technology, the genes that code for the individual spider silk proteins have been isolated and genetically engineered into other hosts to produce recombinant spider silk proteins (rSSp) of varying sizes, Larger rSSp have correspondingly greater mechanical properties in any resulting materials. Using current production methods, larger rSSp cannot be produced in commercially viable quantities while simultaneously being economically viable. The current production …


Whole Cell Cross-Linking To Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs, Bart C. Weimer, Poyin Chen, Prerak T. Desai, Dong Chen, Jigna Shah Jul 2018

Whole Cell Cross-Linking To Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs, Bart C. Weimer, Poyin Chen, Prerak T. Desai, Dong Chen, Jigna Shah

Biological Engineering Faculty Publications

Bacterial surface ligands mediate interactions with the host cell during association that determines the specific outcome for the host–microbe association. The association begins with receptors on the host cell binding ligands on the microbial cell to form a partnership that initiates responses in both cells. Methods to determine the specific cognate partnerships are lacking. Determining these molecular interactions between the host and microbial surfaces are difficult, yet crucial in defining biologically important events that are triggered during association of the microbiome, and critical in defining the initiating signal from the host membrane that results in pathology or commensal association. In …


Polymeric Peptide Mimics For Protein Delivery, Coralie Backlund Jul 2018

Polymeric Peptide Mimics For Protein Delivery, Coralie Backlund

Doctoral Dissertations

The plasma membrane is a major obstacle in the development and use of biomacromolecules for intracellular applications. Consequently, proteins with intracellular targets represent an enormous, yet under studied avenue for therapeutics. Extended research has aimed at facilitating intracellular delivery of exogenous proteins using protein transduction domains (PTDs), which allow transport of bioactive molecules into cells. Synthetic polymers, inspired by PTDs, provide a well-controlled platform to vary molecular architecture for structure activity relationship studies. Specifically, this thesis focuses on the use of ring-opening metathesis, a facile and efficient polymerization technique, through which we can vary structural parameters to optimize delivery of …


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora Jul 2018

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation …


Wearable Assistive Technologies For Autism: Opportunities And Challenges, Emma Mansouri Benssassi, Juan-Carlos Gomez, Louanne E. Boyd, Gillian R. Hayes, Juan Ye Jun 2018

Wearable Assistive Technologies For Autism: Opportunities And Challenges, Emma Mansouri Benssassi, Juan-Carlos Gomez, Louanne E. Boyd, Gillian R. Hayes, Juan Ye

Engineering Faculty Articles and Research

Autism is a lifelong developmental condition that affects how people perceive the world and interact with others. Challenges with typical social engagement, common in the autism experience, can have a significant negative impact on the quality of life of individuals and families living with autism. Recent advances in sensing, intelligent, and interactive technologies can enable new forms of assistive and augmentative technologies to support social interactions. However, researchers have not yet demonstrated effectiveness of these technologies in long-term real-world use. This article presents an overview of the social and sensory challenges of autism, which offer great opportunities and challenges for …


Comparative Analysis Of Physiological Measurements And Environmental Metrics On Predicting Heat Stress Related Events, Mckenzie Lee Barlow Jun 2018

Comparative Analysis Of Physiological Measurements And Environmental Metrics On Predicting Heat Stress Related Events, Mckenzie Lee Barlow

Master's Theses

Exposure to high heat and humidity can lead to serious health risks, including heat exhaustion and heat stroke. Wet Bulb Globe Temperature (WBGT) and heat index have historically been used to predict heat stress events, but individualized factors are not included in the measurement. It has been shown that there is a relationship between cardiovascular measurements and heat stress, which could be used to measure heat stress risk on an individual level. Research has been done to find relationships between cardiovascular metrics in a workplace environment, however the study did not include the use of a controlled environment as a …


Hydrotreating Of Guaiacol: A Comparative Study Of Red Mud-Supported Nickel And Commercial Ni/Sio2-Al2o3 Catalysts, Hossein Jahromi, Foster Agblevor May 2018

Hydrotreating Of Guaiacol: A Comparative Study Of Red Mud-Supported Nickel And Commercial Ni/Sio2-Al2o3 Catalysts, Hossein Jahromi, Foster Agblevor

Biological Engineering Faculty Publications

Upgrading of bio-oil through catalytic hydrotreating was investigated with guaiacol as a model compound. A nickel supported on red mud (Ni/RM) hydrotreating catalyst was developed and compared to the standard Ni/SiO2-Al2O3 catalysts under similar experimental conditions. The Ni/RM catalyst was characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), BET specific surface area, and temperature programmed reduction (TPR). The effects of reaction temperature (300, 350, 400 °C) and initial hydrogen pressure (4.83 MPa (700 psi), 5.52 MPa (800 psi), and 6.21 MPa (900 psi)) on products distribution …


Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender May 2018

Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender

Student Theses 2015-Present

This paper aims to shed light on the dissonance caused by the superimposition of Dominant Human Systems on Natural Systems. I highlight the synthetic nature of Dominant Human Systems as egoic and linguistic phenomenon manufactured by a mere portion of the human population, which renders them inherently oppressive unto peoples and landscapes whose wisdom were barred from the design process. In pursuing a radical pragmatic approach to mending the simultaneous oppression and destruction of the human being and the earth, I highlight the necessity of minimizing entropic chaos caused by excess energy expenditure, an essential feature of systems that aim …


Nutrient Limitation Of Algal Growth In Fishery Lakes, Madeline Ludwig May 2018

Nutrient Limitation Of Algal Growth In Fishery Lakes, Madeline Ludwig

Biological and Agricultural Engineering Undergraduate Honors Theses

This study investigated the effect of nutrient addition on algal growth in three United States Forest Service lakes for fishery management in Arkansas. In fishery managed lakes, fertilization works by manipulating algae growth, a basal food resource in lakes, to promote the growth of the fish population. For the nutrient addition experiments, water was collected from each lake in cubitainers and spiked with nutrients; the treatments included the control, nitrogen (+N), phosphorus (+P), and nitrogen and phosphorus (+N +P). When algal growth was visually observed, a water sample was collected from each cubitainer and analyzed for chlorophyll-α. The results showed …


In-Cage Surface Wetting System For Cooling Poultry In Transport, Ryan Clark May 2018

In-Cage Surface Wetting System For Cooling Poultry In Transport, Ryan Clark

Biological and Agricultural Engineering Undergraduate Honors Theses

Abstract

Poultry health and mortality rates are important considerations in poultry production, as companies can minimize product loss and appeal to a consumer base whose concern for animal welfare continues to grow. Although animal welfare is a consideration for the entire poultry production process, this project focuses on the live-haul phase of the process, specifically during transport from grow houses to processing facilities. During the summer months, broiler chickens being transported can suffer from heat stress that can lead to death. This project consists of the designing and testing of an in-cage surface wetting system to minimize heat stress incidents …


Designing A Synthetic Spider Silk-Based Coating For Urinary Catheters To Reduce The Risk Of Cautis, Alexander Cook May 2018

Designing A Synthetic Spider Silk-Based Coating For Urinary Catheters To Reduce The Risk Of Cautis, Alexander Cook

Undergraduate Honors Capstone Projects

Urinary and Intravenous (IV) catheters are two of the most commonly used medical devices for administering vital drugs and obtaining diagnostic samples from patients. Unfortunately, hospital acquired infections (HAIs) occur at alarming rates due to catheter usage. The aim of this project was to design a urinary catheter that would decrease the occurrence of these infections with a catheter coating that utilizes the antimicrobial properties of synthetic spider silk in combination with the antiseptic chlorhexidine. This synthetic spider silk catheter will introduce a novel approach to catheterization in the medical industry.