Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2022

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 431

Full-Text Articles in Aerospace Engineering

Evaluating System Usability, Workload Suitability, And User Experience Of Game-Based Virtual Reality In Spaceflight Education And Training, Lana Laskey, Joseph Keebler Dec 2022

Evaluating System Usability, Workload Suitability, And User Experience Of Game-Based Virtual Reality In Spaceflight Education And Training, Lana Laskey, Joseph Keebler

National Training Aircraft Symposium (NTAS)

Game-based instruction and immersive virtual reality are enhanced pedagogical methods beneficial in training environments involving complex disciplines, ranging from medical applications to construction engineering technology. This study investigated the use of game-based virtual reality (GBVR) when applied to the complex discipline of spaceflight education and training. As modern society places increasing demand on space-based amenities, the need for proficient satellite operators will also increase, requiring more accessible and more advanced training options. Spaceflight training scenarios, immersed in the GBVR environment, were developed and deployed to university student participants. Multiple validated scales were used to measure the GBVR system regarding three …


Creating The Next Generation Of Aviation Professionals: Creating Diversity In The Next Generation, Jason T. Lorenzon Dec 2022

Creating The Next Generation Of Aviation Professionals: Creating Diversity In The Next Generation, Jason T. Lorenzon

National Training Aircraft Symposium (NTAS)

Covid-19, mandatory retirement age, the 1500 Hour ATP rule and lack of future aviation professionals has lead to a global industry crisis. With the boom of the 1990’s, 9/11, the Great Recession, Covid-19, the lack of younger individuals dedicating themselves to the study of aviation has led to a current crisis of a lack of aviation professionals ready to serve the industry currently and in the future. Lorenzon will trace how the work force shortage started well over twenty years ago. Boeing and Airbus both predict that over 2.2 million new workers including over 600000 pilots will be needed. Yet …


Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox Dec 2022

Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox

Mechanical Engineering Research Theses and Dissertations

There is much room for improvement in tube network inspections of jet aircraft. Often, these inspections are incomplete and inconsistent. In this paper, we develop a Modular Robotic Inspection System (MoRIS) for jet aircraft tube networks and a corresponding kinematic model. MoRIS consists of a Base Station for user control and communication, and robotic Vertebrae for accessing and inspecting the network. The presented and tested design of MoRIS can travel up to 9 feet in a tube network. The Vertebrae can navigate in all orientations, including smooth vertical tubes. The design is optimized for nominal 1.5" outside diameter tubes. We …


Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi Dec 2022

Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi

Civil and Environmental Engineering Theses and Dissertations

Various seismic and wind engineering designs and retrofit strategies have been in development to meet structures' proper and safe operation during earthquake and wind excitation. One such method is the addition of fluid and particle dampers, such as sand dampers, in an effort to reduce excessive and dangerous displacements of structures. The present study implements the discrete element method (DEM) to assess the performance of a pressurized sand damper (PSD) and characterize the dissipated energy under cyclic loading. The idea of a PSD is to exploit the increase in shearing resistance of sand under external pressure and the associated ability …


Effects Of Pressure Side Film Cooling Hole Placement And Condition On Surface Heat Transfer Characteristics Of A Transonic Turbine Blade Tip, Hallie Collopy, Phillip M. Ligrani, Hongzhou Xu, Michael Fox Dec 2022

Effects Of Pressure Side Film Cooling Hole Placement And Condition On Surface Heat Transfer Characteristics Of A Transonic Turbine Blade Tip, Hallie Collopy, Phillip M. Ligrani, Hongzhou Xu, Michael Fox

PRC-Affiliated Research

The effects of film cooling hole placement location along the upper pressure side of a transonic squealer are considered. The thermal performance of four different film cooling configurations; B1, B2, B3 and B4, are considered using the University of Alabama in Huntsville's SS/TS/WT (supersonic/transonic/wind tunnel) experimental facility and a simulated turbine blade row using a linear cascade. Surface-varying results are provided for both the squealer blade tip surface, and for the upper pressure side of the squealer blade. These results are given for blowing ratios ranging from 0.42 to 3.20 in the form of spatially-resolved and spatially-averaged adiabatic film cooling …


Health Management And Adaptive Control Of Distributed Spacecraft Systems, Tatiana Alejandra Gutierrez Martinez Dec 2022

Health Management And Adaptive Control Of Distributed Spacecraft Systems, Tatiana Alejandra Gutierrez Martinez

Doctoral Dissertations and Master's Theses

As the development of challenging missions like on-orbit construction and collaborative inspection that involve multi-spacecraft systems increases, the requirements needed to improve post-failure safety to maintain the mission performance also increases, especially when operating under uncertain conditions. In particular, space missions that involve Distributed Spacecraft Systems (e.g, inspection, repairing, assembling, or deployment of space assets) are susceptible to failures and threats that are detrimental to the overall mission performance. This research applies a distributed Health Management System that uses a bio-inspired mechanism based on the Artificial Immune System coupled with a Support Vector Machine to obtain an optimized health monitoring …


Polyelectrolyte Functionalized Forward Osmosis For Water Reclamation From Synthetic Spacecraft Wastewater, Alina Ripp Dec 2022

Polyelectrolyte Functionalized Forward Osmosis For Water Reclamation From Synthetic Spacecraft Wastewater, Alina Ripp

Electronic Theses and Dissertations, 2020-

This study investigated the application of a polyelectrolyte (PE)-assisted metallic iron nanoparticle-integrated forward osmosis (FO) membrane to treat synthetic spacecraft wastewater comprising urea, ammonium carbonate, and linear alkylbenzene sulfonate (LAS). The draw solution (MgSO4) diluted via the FO operation was further treated using a nanofiltration (NF) membrane aimed at producing potable quality water by the FO-NF hybrid process. A cellulose triacetate FO membrane was functionalized by layer-by-layer deposition of polyallylamine hydrochloride (PAH) and polyacrylic acid (PAA) followed by incorporating zero valent iron nanoparticles (ZVINP) within the "bilayers". It required 14 bilayers to ensure a uniform coating as demonstrated via scanning …


Adaptive Analytic Continuation For The State Transition Tensors Of The Two-Body Problem, Tahsinul Haque Tasif Dec 2022

Adaptive Analytic Continuation For The State Transition Tensors Of The Two-Body Problem, Tahsinul Haque Tasif

Electronic Theses and Dissertations, 2020-

In the past few decades, Kessler syndrome (named after Donald J. Kessler) has become a point of concern in the field of Space Situational Awareness and the future of space missions. It refers to a scenario, where space debris in Earth's orbits collides and creates an exponential increase in space debris numbers leading to more collisions and more debris. In order to handle the resulting challenges like conjunction analysis, tracking, and probability of collisions, the State Transition Matrix (STM) and Tensors (STTs) of the orbit problem play a significant role. In addition, STM and STTs are ubiquitous in spaceflight dynamics, …


Noise And Propulsive Efficiency Interactions For Rotors And Propellers At Constant Thrust, Riccardo Roiati Mr. Dec 2022

Noise And Propulsive Efficiency Interactions For Rotors And Propellers At Constant Thrust, Riccardo Roiati Mr.

Doctoral Dissertations and Master's Theses

In the emerging market of Advanced Air Mobility (AAM), aerospace companies have been designing and prototyping electric and hybrid vehicles to revolutionize travel. These vehicles must have low noise and particulate emissions while also having enough propulsive efficiency to complete the mission. This thesis aims to study the relationship between noise and propulsive efficiency as related to any aircraft equipped with an electric motor and a variable pitch rotor/propeller. The combination of the electric motor with the variable pitch propeller/rotor allows for a decoupled rotational speed and torque generation, meaning that the electric motor can generate the same amount of …


On-Board Artificial Intelligence For Failure Detection And Safe Trajectory Generation, Eduardo Morillo Dec 2022

On-Board Artificial Intelligence For Failure Detection And Safe Trajectory Generation, Eduardo Morillo

Doctoral Dissertations and Master's Theses

The use of autonomous flight vehicles has recently increased due to their versatility and capability of carrying out different type of missions in a wide range of flight conditions. Adequate commanded trajectory generation and modification, as well as high-performance trajectory tracking control laws have been an essential focus of researchers given that integration into the National Air Space (NAS) is becoming a primary need. However, the operational safety of these systems can be easily affected if abnormal flight conditions are present, thereby compromising the nominal bounds of design of the system's flight envelop and trajectory following. This thesis focuses on …


The Effects Of Light Intensity And Cell Structure On The Cultivation Of Arthrospira Platensis, Taylor Barnhart Dec 2022

The Effects Of Light Intensity And Cell Structure On The Cultivation Of Arthrospira Platensis, Taylor Barnhart

Honors Theses

As scientists explore further into space, more cost-effective resources are needed for long-term space travel. An interesting solution is Arthrospira platensis, a filamentous cyanobacteria high in proteins and nutrients, and known for its helical structure. In unfavorable conditions, coiled spirulina cells become straight. Spirulina converts carbon dioxide gas into pure oxygen and the different cell structures stimulate different responses in oxygen production and cultivation. In these experiments, 2.3 L containers of pure coiled spirulina and mixed (coiled and straight) spirulina were placed into 3 incubators with different light intensities: 51µmol/m2/s, 25µmol/m2/s, 12µmol/m2/s. Each experiment length was 72 hours and the …


Certification Basis For A Fully Autonomous Uncrewed Passenger Carrying Urban Air Mobility Aircraft, Steve Price Dec 2022

Certification Basis For A Fully Autonomous Uncrewed Passenger Carrying Urban Air Mobility Aircraft, Steve Price

Student Works

The Urban Air Mobility campaign has set a goal to efficiently transport passengers and cargo in urban areas of operation with autonomous aircraft. This concept of operations will require aircraft to utilize technology that currently does not have clear regulatory requirements. This report contains a comprehensive analysis and creation of a certification basis for a fully autonomous uncrewed passenger carrying rotorcraft for use in Urban Air Mobility certified under Title 14 Code of Federal Regulations Part 27. Part 27 was first analyzed to determine the applicability of current regulations. The fully electric propulsion system and fully autonomous flight control system …


Additively Manufactured Lenses For Modulating Guided Waves In Laminated Composites, Hajar Righi Dec 2022

Additively Manufactured Lenses For Modulating Guided Waves In Laminated Composites, Hajar Righi

Theses and Dissertations

Composite materials have increasingly been used as an alternative to metals and other isotropic materials for primary structural components in aerospace industries. Unlike traditional isotropic materials, composite materials are known to have complex internal microstructures. Therefore, it is essential to develop methods for the inspection, evaluation, and monitoring of composite materials. Ultrasonic-guided waves and, more precisely, Lamb waves have proven to be an efficient and accurate technique for the non-destructive testing. Since guided waves are dispersive and multimodal, it is important to develop a practical method to manipulate Lamb waves to achieve better structural health monitoring and non-destructive inspection results. …


Quasi 1d Modelling Of A Scramjet Engine Cycle Using Heiser-Pratt Approach, Asmaa Chakir Dec 2022

Quasi 1d Modelling Of A Scramjet Engine Cycle Using Heiser-Pratt Approach, Asmaa Chakir

Theses and Dissertations

Scramjet engines are key for sustained hypersonic flights. Analytic models play a critical role in the preliminary design of a scramjet engine configuration. The objective of this research is to develop and validate a quasi-1D model for the scramjet engine encompassing inlet, isolator and combustor, to evaluate the impact of flight conditions and design parameters on the engine functionality. The model is developed assuming isentropic flow in the inlet with a single turn; modified Fanno-flow equations in the isolator that account for the area change of the core flow; and the combustor is modeled using Heiser-Pratt equations accounting for the …


Development And Deployment Of A Dynamic Soaring Capable Uav Using Reinforcement Learning, Jacob Adamski Dec 2022

Development And Deployment Of A Dynamic Soaring Capable Uav Using Reinforcement Learning, Jacob Adamski

Doctoral Dissertations and Master's Theses

Dynamic soaring (DS) is a bio-inspired flight maneuver in which energy can be gained by flying through regions of vertical wind gradient such as the wind shear layer. With reinforcement learning (RL), a fixed wing unmanned aerial vehicle (UAV) can be trained to perform DS maneuvers optimally for a variety of wind shear conditions. To accomplish this task, a 6-degreesof- freedom (6DoF) flight simulation environment in MATLAB and Simulink has been developed which is based upon an off-the-shelf unmanned aerobatic glider. A combination of high-fidelity Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) in ANSYS Fluent and low-fidelity vortex lattice (VLM) …


Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik Dec 2022

Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik

Publications

A reinforced carbon composite can include a carbon sub­strate and a metal organic framework bonded to the carbon substrate. For example, a reinforced carbon composite can include a first layer, a second layer, and a resin adhered to the first layer and the second layer. The first layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate. The second layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate.


Commercial Airliner Winglet Design Optimization – A Case Study, Anthony Gutierrez Dec 2022

Commercial Airliner Winglet Design Optimization – A Case Study, Anthony Gutierrez

Symposium of Student Scholars

The objective of this research is to determine the effect on aerodynamic performance due to changes of winglets design variables found of the Boeing 737-700 aircraft. The various winglet types studied in this research include the blended, canted, wingtip fence and split scimitar. The variables include height, sweep angle, taper ratio, and the inclination angle. These variables are altered in 5% increments from -15% to +15% of their original baseline values. Each altered winglet design only changes one variable at a time while keeping all other variables constant. The altered models are compared to the original by finding the aerodynamic …


Actively Guided Cansats For Assisting Localization And Mapping In Unstructured And Unknown Environments, Cary Chun, M. Hassan Tanveer Dec 2022

Actively Guided Cansats For Assisting Localization And Mapping In Unstructured And Unknown Environments, Cary Chun, M. Hassan Tanveer

Symposium of Student Scholars

When navigating in unknown and unstructured environments, Unmanned Arial Vehicles (UAVs) can struggle when attempting to preform Simultaneous Localization and Mapping (SLAM) operations. Particularly challenging circumstance arise when an UAV may need to land or otherwise navigate through treacherous environments. As the primary UAV may be too large and unwieldly to safely investigate in these types of situations, this research effort proposes the use of actively guided CanSats for assisting in localization and mapping of unstructured environments. A complex UAV could carry multiple of these SLAM capable CanSats, and when additional mapping and localization capabilities where required, the CanSat would …


Unmanned Aerial System Design For Civil Engineering Operations – A Vip Study, Ezra Robles, Harrison Vicknair, Derek Price, Logan Westra, George Pitcock, Joshua Diamond, Bhuvan Saraswat, Jeremiah Prayor, Fon Saliki Dec 2022

Unmanned Aerial System Design For Civil Engineering Operations – A Vip Study, Ezra Robles, Harrison Vicknair, Derek Price, Logan Westra, George Pitcock, Joshua Diamond, Bhuvan Saraswat, Jeremiah Prayor, Fon Saliki

Symposium of Student Scholars

Unmanned Aerial System Design for Civil Engineering Operations – A Case Study

The objective of the project is to design and build a modular Unmanned Aerial System (UAS) that meets the specifications set forth by United Consulting – a local civil engineering company. These specifications are achieved through three unique missions. In each mission, data is collected using different methods. These missions include land surveying, bridge structure inspection and manhole probing. The key requirements of the drone are to maintain a minimum flight time of 30 minutes and the ability to receive and transmit telemetry, photographic and video data from …


Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky Dec 2022

Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky

Doctoral Dissertations

The adoption of mathematically formal simulation-based optimization approaches within aerodynamic design depends upon a delicate balance of affordability and accessibility. Techniques are needed to accelerate the simulation-based optimization process, but they must remain approachable enough for the implementation time to not eliminate the cost savings or act as a barrier to adoption.

This dissertation introduces a reduced-order model technique for accelerating fixed-point iterative solvers (e.g. such as those employed to solve primal equations, sensitivity equations, design equations, and their combination). The reduced-order model-based acceleration technique collects snapshots of early iteration (pre-convergent) solutions and residuals and then uses them to project …


Development And Implementation Of A Novel Resonantly Ionized Photoemission Thermometry Technique For One-Dimensional Measurements, Walker B. Mccord Dec 2022

Development And Implementation Of A Novel Resonantly Ionized Photoemission Thermometry Technique For One-Dimensional Measurements, Walker B. Mccord

Doctoral Dissertations

In this work, Resonantly Ionized Photoemission Thermometry (RIPT) is established and validated as a novel, non-intrusive, non-seeded, One-Dimensional (1D) line thermometry technique. The RIPT technique resonantly ionizes a target molecule via REMPI (Resonant Enhanced Multi-Photon Ionization) of selectively chosen rotational peaks within a resonant absorption band. Thus, efficiently ionizing and subsequently exciting local nitrogen molecules either by direct or indirect schemes. The excited nitrogen deexcites through photoemissions of the first negative band of N2+[molecular nitrogen], specifically near 390, 425, and 430nm [nanometers], that is then acquired as a 1D line signal. The signal strength at all transitions …


Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez Dec 2022

Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez

Doctoral Dissertations

A computational fluid dynamics approach to evaluate the feasibility of a slotted, natural-laminar-flow airfoil designed for transonic applications, to perform as a high-lift system was developed. Reynolds-Averaged Navier-Stokes equations with a laminar-turbulent transition model for subsonic flow at representative flight conditions were used for this analysis. Baseline high-lift simulations were performed to understand the stall characteristics of the slotted, natural-laminar-flow airfoil. Maximum aerodynamic efficiency was observed with a constant slot-width. In addition, the effectiveness of the aft-element as a high-lift device was explored. Results indicate that a micro-flap is a viable option as a lift effector. These are most effective …


S7e9: What New Frontiers Await For Maine’S Space Economy?, Ron Lisnet, Ali Abedi, Joseph Patton Dec 2022

S7e9: What New Frontiers Await For Maine’S Space Economy?, Ron Lisnet, Ali Abedi, Joseph Patton

The Maine Question

University of Maine research and education have ascended beyond Earth’s atmosphere since the 1990s. For example, UMaine scientists have tested the latest hypervelocity decelerators for NASA space travel and created a wireless leak detection system for the International Space Station. Through its latest inventions and studies, and scholarship and fellowship programs, UMaine plays a critical role in advancing the state’s space economy and training future leaders in the aerospace industry. But the university is far from reaching its final frontier.

In recent years, UMaine researchers have been developing the state’s first small research satellite with the University of Southern Maine …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere Dec 2022

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere

All Dissertations

Carbon fibers have the highest strength and modulus among all known fibers and are used as reinforcements in high-performance composites [1]. Carbon fibers also have a very low density relative to metals. Therefore, carbon fibers possess ultrahigh specific strength and modulus, which make them desirable for high-performance light-weight composites. A vast majority of commercial carbon fibers are produced from PAN precursors that are expensive, which limits the use of PAN-derived carbon fibers to aerospace applications (e.g., airplanes). However, for costsensitive applications, there is a need for low-cost, moderate performance carbon fibers. Lignin is a low-cost by-product of pulping and biorefining …


Cryogenic Flow Boiling Heat Transfer On Additively Manufactured Liquid Rocket Engine Cooling Channels, Debra Jazmin Ortega Dec 2022

Cryogenic Flow Boiling Heat Transfer On Additively Manufactured Liquid Rocket Engine Cooling Channels, Debra Jazmin Ortega

Open Access Theses & Dissertations

The enhancement of flow boiling heat transfer is critical because it can solve thermal management issues seen across all engineering and manufacturing applications. Even though advancements are being made, more studies are needed to understand the behavior of forced convective boiling further.Currently, there are four major issues in the field of regenerative cooling of liquid rocket engines. 1. The cooling channels are typically manufactured using conventional machining, while aerospace industries are currently exploring the additive manufacturing approach. 2. The experimental critical heat flux values for cryogenic fluids are either lower or very close to the model predictions; however, the effect …


Compact Electrospray Propulsion Systems For Small Form-Factor Satellites: An Orbital Performance Survey & Platform Design, Alberto Meza Dec 2022

Compact Electrospray Propulsion Systems For Small Form-Factor Satellites: An Orbital Performance Survey & Platform Design, Alberto Meza

Open Access Theses & Dissertations

Over the past decades, small form-factor satellites such as CubeSats have remained as one of the most accessible platforms to reach space for universities, research institutions, private and governmental entities to perform a wide range of missions. This paper presents a survey into the design and implementation of an electrospray rail thruster, to be integrated to the CubeSat platform. The design investigated features propellant tanks for each individual thruster embedded inside the rail of a standard 1U CubeSat. The capabilities of utilizing the electrospray thruster as an attitude & determination control system was also investigated in which, a pointing accuracy …


Natural 2d Layered Mineral Cannizzarite With Anisotropic Optical Responses, Arindam Dasgupta, Xiaodong Yang, Jie Gao Dec 2022

Natural 2d Layered Mineral Cannizzarite With Anisotropic Optical Responses, Arindam Dasgupta, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Cannizzarite is a naturally occurring mineral formed by van der Waals (vdW) stacking of alternating layers of PbS-like and Bi2S3-like two-dimensional (2D) materials. Although the PbS-type and Bi2S3-type 2D material layers are structurally isotropic individually, the forced commensuration between these two types of layers while forming the heterostructure of cannizzarite induces strong structural anisotropy. Here we demonstrate the mechanical exfoliation of natural cannizzarite mineral to obtain thin vdW heterostructures of PbS-type and Bi2S3-type atomic layers. The structural anisotropy induced anisotropic optical properties of thin cannizzarite flakes are explored through angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent anisotropic third-harmonic generation. …


A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith Dec 2022

A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith

Open Access Theses & Dissertations

The Ti-6Al-4V alloy is widely used in aerospace applications for its beneficial combination of properties. However, this alloy has high solubility for oxygen and thus a high reactivity. Recovered data contained within the Columbia artifacts suggests that this alloy underwent an accelerated degradation and combustion reaction when exposed to the high enthalpy, low-pressure surroundings experienced during reentry into Earth's atmosphere. Arc-jet testing has provided a simulated aerothermodynamic heating environment to mimic what the spacecraft endured. When the effect of thermal alteration on this alpha-beta phase alloy was investigated during previous studies, optical metallography and microhardness tests revealed inconsistencies between samples …


Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth Dec 2022

Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth

McKelvey School of Engineering Theses & Dissertations

With the advent of arteriovenous fistula (AVF) for use in hemodialysis, the anastomosis built for such use has become a central point of the study to understand the flow and wall shear stresses in such a system since very large wall shear stresses can lead to arterial/vein rupture. Considering the commonly used creation site of an anastomosis as connecting the radial artery to the cephalic vein, a model is created to calculate the wall shear stresses across various components of the system. The model depicts a connection of the specified vein and artery bridged together allowing the increase in blood …