Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Aerospace Engineering

Lifting-Line Predictions For Life And Twist Distributions To Minimize Induced Drag In Ground Effect, Kyler Church Dec 2022

Lifting-Line Predictions For Life And Twist Distributions To Minimize Induced Drag In Ground Effect, Kyler Church

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The elliptic lift distribution produces the minimum induced drag for a given wingspan and desired lift outside of ground effect. This distribution can be generated on any wing by using geometric and/or aerodynamic twist. However, in ground effect, the elliptic lift distribution is not necessarily that which minimizes induced drag. The present work uses a modern numerical lifting-line algorithm to evaluate how the optimum lift distribution varies as a function of height above ground. The algorithm is also used to obtain the twist distributions that should be applied to wings of varying aspect ratios and taper ratios to produce the …


A Theoretical Trade-Off Between Wave Drag And Sonic Boom Loudness Due To Equivalent Area Changes On A Supersonic Body, Nolan L. Dixon Dec 2022

A Theoretical Trade-Off Between Wave Drag And Sonic Boom Loudness Due To Equivalent Area Changes On A Supersonic Body, Nolan L. Dixon

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The NASA University Leadership Initiative (ULI) titled ”Adaptive Aerostructures for Revolutionary Civil Supersonic Transportation” consists of a team of university and industry partners studying the feasibility of reducing the perceived loudness of the sonic boom by introducing an adaptive geometry at localized regions of an aircraft’s outer-mold line. The Utah State University AeroLab is a member of this ULI team and has produced low-fidelity tools to predict the aerodynamic and boom loudness effects from localized changes to the geometry.

Such changes to the geometry affect both the sonic boom loudness and wave drag; however, the precise relationship between boom loudness …


Control Mapping Methodology For Tailless Morphing-Wing Aircraft, Zachary S. Montgomery Aug 2022

Control Mapping Methodology For Tailless Morphing-Wing Aircraft, Zachary S. Montgomery

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Advanced aircraft designs tend to have several control surfaces or devices that affect the flight of the aircraft. It is difficult or even impossible for a pilot to directly control each of these devices and fly the aircraft well. Therefore, a control mapping logic is needed to take typical pilot commands and map them to what the control devices should do to achieve the pilot’s commands. This work presents a methodology for determining this control mapping logic using two different approaches. The first uses a theoretical approach based on lifting-line theory, while the second leverages computational methods. The methodology consists …


Fabrication And Testing Of Catalyst-Infused Filament For 3d Printing Of Ignition-Augmented Hybrid Rocket Fuels, Kurt C. Olsen Aug 2022

Fabrication And Testing Of Catalyst-Infused Filament For 3d Printing Of Ignition-Augmented Hybrid Rocket Fuels, Kurt C. Olsen

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis describes and addresses the need for reliable ignition in small satellite hybrid propulsion systems using higher density oxidizers. It describes methods of creating custom 3D printing ABS plastic based filaments that contain small amounts of catalysts. These catalysts lead to a more reliable and energy-efficient ignition of a hybrid rocked propulsion system using catalyst-infused ABS and nitrous oxide and oxygen blend called Nytrox, commonly known as ”laughing gas.” The ”laughing gas” has a higher density and can therefore provide more ”miles per gallon” in a hybrid propulsion system on a small satellite when compared to gaseous oxygen (GOX). …


Optimal Relative Path Planning For Constrained Stochastic Space Systems, Nathan Bohus Stastny May 2022

Optimal Relative Path Planning For Constrained Stochastic Space Systems, Nathan Bohus Stastny

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Rendezvous and proximity operations for automated spacecraft systems requires advanced path planning techniques that are capable of generating optimal paths. Real-world constraints, such as sensor noise and actuator errors, complicate the planning process. Operations also require flight safety considerations in order to prevent the spacecraft from potentially colliding with the associated companion spacecraft. This work proposes a new, ground-based trajectory planning approach that seeks an optimal trajectory while meeting all mission constraints and accounting for vehicle performance and safety requirements. This approach uses a closed-loop linear covariance simulation of the relative trajectory coupled with a genetic algorithm to determine fuel …


A Study Of Wings With Constant And Variable Sweep For Aerodynamic Efficiency In Inviscid Flow, Bruno Moorthamers May 2022

A Study Of Wings With Constant And Variable Sweep For Aerodynamic Efficiency In Inviscid Flow, Bruno Moorthamers

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Wing sweep has been studied by industry and academia since the pioneering days of aviation for both high-speed and low-speed applications. In transonic and supersonic flight regimes it serves to delay the onset of compressibility effects and decrease wave drag. In subsonic conditions, flying wing designs sweep back the main lifting surface in such a way that it can be used for longitudinal stability and control, to allow for the elimination of a traditional empenage. This is desirable because it can decrease the aerodynamic drag. Sweep can also be seen in nature in the wings of birds and fins of …