Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Aerospace Engineering

The Design And Development Of A Miniature Gridded Ecr Ion Thruster, Nicholas Nuzzo Dec 2022

The Design And Development Of A Miniature Gridded Ecr Ion Thruster, Nicholas Nuzzo

Masters Theses

Plasma propulsion, a specific subset of electric propulsion (EP), is a class of space propulsion that produces plasma by excitation of a propellant at or above its ionization energy. This ionized propellant is then accelerated by an externally applied field (magnetic and/or electric) and produces thrust. There is an increasing need for miniaturization in spacecraft technology and the use of plasma EP devices in space propulsion. These systems provide an advantage over traditional chemical propulsion solutions which are less efficient and have more mass. Miniaturization of EP devices allows missions to have more space and mass available for their payloads …


Upscaling And Development Of Linear Array Focused Laser Differential Interferometry For Simultaneous 1d Velocimetry And Spectral Profiling In High-Speed Flows, Kirk Davenport Aug 2022

Upscaling And Development Of Linear Array Focused Laser Differential Interferometry For Simultaneous 1d Velocimetry And Spectral Profiling In High-Speed Flows, Kirk Davenport

Masters Theses

In this research a new configuration of linear array-focused laser differential interferometry (LA-FLDI) is described. This measurement expands on previous implementations of LA-FLDI through the use of an additional Wollaston prism. This additional prism expands the typical single LA-FLDI column into two columns of FLDI point pairs. The additional column of probed locations allows for increased spatial sampling of frequency spectra as well as the addition of simultaneous wall normal velocimetry measurements. The new configuration is used to measure the velocity profile and frequency content across a Mach 2 turbulent boundary layer at six wall normal locations simultaneously. Features of …


Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley Aug 2022

Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley

Masters Theses

The rotor hub is one of the most important features of all helicopters, as it provides the pilot a means for controlling the vehicle by changing the characteristics of the main and tail rotors. The hub also provides a structural foundation for the rotors and allows for the rotor blades to respond to aerodynamic forces while maintaining controllability and stability. Due to the inherent geometry and high rate of rotation, the rotor hub in its current form acts a large bluff body and is the primary source of parasite drag on the helicopter, despite its relatively small size. The rotor …


Quasi-One-Dimensional Flow Method For Nuclear Thermal Propulsion Simulator Design, Ethan M. Long May 2022

Quasi-One-Dimensional Flow Method For Nuclear Thermal Propulsion Simulator Design, Ethan M. Long

Masters Theses

Quasi-One-Dimensional flow methods are commonly used to solve flow situations that have multiple driving influences, i.e. heat transfer, area change, and friction. They hold advantages over other computational fluid dynamics methods due to their much lower computational costs and overall simplicity. Typically, these methods are limited in their ability to solve flows due to the simplifying assumptions used. In this model, a simple heat transfer calculation is combined with NASA’s Chemical Equilibrium with Applications to constantly update chemical properties within the simulation. In this thesis, a quasi-one-dimensional model including these additions is developed and applied to a NTP simulator design …


Path Planning And Flight Control Of Drones For Autonomous Pollination, Chapel R. Rice May 2022

Path Planning And Flight Control Of Drones For Autonomous Pollination, Chapel R. Rice

Masters Theses

The decline of natural pollinators necessitates the development of novel pollination technologies. In this thesis, a drone-enabled autonomous pollination system (APS) that consists of five primary modules: environment sensing, flower perception, path planning, flight control, and pollination mechanisms is proposed. These modules are highly dependent upon each other, with each module relying on inputs from the other modules. This thesis focuses on approaches to the path planning and flight control modules. Flower perception is briefly demonstrated developing a map of flowers using results from previous work. With that map of flowers, APS path planning is defined as a variant of …


A Numerical Optimization Study Of A Novel Electrospray Emitter Design, Joshua H. Howell May 2022

A Numerical Optimization Study Of A Novel Electrospray Emitter Design, Joshua H. Howell

Masters Theses

The low thrust and high specific impulse of electric propulsion has been brought to the forefront for CubeSat and small spacecraft applications. Electrospray thrusters, which operate via electrostatic principles, have seen much research, development, and application in recent years. The small sizes of the spacecraft that utilize electrospray thrusters has focused development into the miniaturization of this technology to the micro-scale. Miniaturization introduces design challenges that must be addressed, including power supply mass and footprint requirements. This consequence requires investigation into the effects of design choices on the thruster onset voltage, defined as the voltage at which ion emission begins. …


Dynamic Maneuvers For Satellite On-Orbit Servicing Utilizing Novel Continuum Robotics: Development & Experimentation, Nathan Dalton Apr 2022

Dynamic Maneuvers For Satellite On-Orbit Servicing Utilizing Novel Continuum Robotics: Development & Experimentation, Nathan Dalton

Masters Theses

Robotic on-orbit servicing is a developing technology that seeks to increase the longevity and repairability of faulty or aging resident space objects. In this research, the development of a flexible continuum manipulator for a small satellite system that performs low-complexity on-orbit servicing or debris removal is presented. Derivations of manipulator kinematics are described in detail, a non-linear control scheme has been developed, and the accuracy and servicing applications for the prototype are evaluated and discussed. The manipulator has been tested on an air-bearing dynamics simulator, and the results are extensively analyzed. System recommendations and future work suggestions are presented.


Design And Optimization Of An Electron Cyclotron Resonance Thruster, Austen Thomas Apr 2022

Design And Optimization Of An Electron Cyclotron Resonance Thruster, Austen Thomas

Masters Theses

Presented in this work is the process in the design and optimization of a coaxial electron cyclotron resonance thruster. Electron cyclotron resonance thrusters are novel microwave-based thrusters which possess select technological advantages over mature electric propulsion concepts such as being electrodeless and only requiring a single power source. The thruster constructed in this work is a coaxial configuration and is termed the Western electron cyclotron resonance thruster. Thruster dimensions were optimized based on past experimentation completed with ECR thrusters. In an attempt to enhance the microwave plasma coupling of the coaxial thruster design three different antenna configurations were considered: a …


Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch Jan 2022

Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch

Masters Theses

"This research presents studies of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X's USim® software to quantify the nozzle's capabilities. A2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T's Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were …