Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Aerospace Engineering

Multiple Discharges Before Leader Inception In Long Air Gaps Under Positive Switching Impulses, Xiangen Zhao, Juhyeong Lee, Gang Liu, Lei Jia, Yang Liu, Junjia He, Yaping Du Oct 2022

Multiple Discharges Before Leader Inception In Long Air Gaps Under Positive Switching Impulses, Xiangen Zhao, Juhyeong Lee, Gang Liu, Lei Jia, Yang Liu, Junjia He, Yaping Du

Mechanical and Aerospace Engineering Faculty Publications

There are multiple corona bursts before leader inception when the rising rate of the applied voltage or electric field is not sufficiently high enough in long positive sparks. In existing studies, no attention has been paid to whether these corona bursts occur in the same location, and they are mostly considered directly as belonging to the same discharge. However, this paper presents that in a typical rod-plate long air gap, the multiple corona bursts before leader inception are distributed in at least two different locations, and the highest probability of three discharges occurs. Also, the discharge occurs with the highest …


Design Of Composite Double-Slab Radar Absorbing Structures Using Forward, Inverse, And Tandem Neural Networks, Devin Nielsen, Juhyeong Lee, Young-Woo Nam Sep 2022

Design Of Composite Double-Slab Radar Absorbing Structures Using Forward, Inverse, And Tandem Neural Networks, Devin Nielsen, Juhyeong Lee, Young-Woo Nam

Mechanical and Aerospace Engineering Faculty Publications

The survivability and mission of a military aircraft is often designed with minimum radar cross section (RCS) to ensure its long-term operation and maintainability. To reduce aircraft’s RCS, a specially formulated Radar Absorbing Structures (RAS) is primarily applied to its external skins. A Ni-coated glass/epoxy composite is a recent RAS material system designed for decreasing the RCS for the X-band (8.2 – 12.4 GHz), while maintaining efficient and reliable structural performance to function as the skin of an aircraft. Experimentally measured and computationally predicted radar responses (i.e., return loss responses in specific frequency ranges) of multi-layered RASs are expensive and …


Hyper-Velocity Impact Performance Of Foldcore Sandwich Composites, Nathan Hoch, Chase Mortensen, Juhyeong Lee, Khari Harrison, Kalyan Raj Kota, Thomas Lacy Sep 2022

Hyper-Velocity Impact Performance Of Foldcore Sandwich Composites, Nathan Hoch, Chase Mortensen, Juhyeong Lee, Khari Harrison, Kalyan Raj Kota, Thomas Lacy

Mechanical and Aerospace Engineering Faculty Publications

A foldcore is a novel core made from a flat sheet of any material folded into a desired pattern. A foldcore sandwich composite (FSC) provides highly tailorable structural performance over conventional sandwich composites made with honeycomb or synthetic polymer foam cores. Foldcore design can be optimized to accommodate complex shapes and unit cell geometries suitable for protective shielding structures

This work aims to characterize hypervelocity impact (> 2000 m/s, HVI) response and corresponding damage morphologies of carbon fiber reinforced polymer (CFRP) FSCs. A series of normal (0° impact angle) and oblique (45° impact angle) HVI (~3km/s nominal projectile velocity) impact …


Predicting Stochastic Lightning Mechanical Damage Effects On Carbon Fiber Reinforced Polymer Matrix Composites, Juhyeong Lee, Syed Zulfiqar Hussain Shah Sep 2022

Predicting Stochastic Lightning Mechanical Damage Effects On Carbon Fiber Reinforced Polymer Matrix Composites, Juhyeong Lee, Syed Zulfiqar Hussain Shah

Mechanical and Aerospace Engineering Faculty Publications

Three stochastic air blast models are developed with spatially varying elastic properties and failure strengths for predicting lightning mechanical damage to AS4/3506 carbon/epoxy composites subjected to < 100 kA peak currents: (1) the conventional weapon effects program (CWP) model, (2) the coupled eulerianlagrangian (CEL) model, and (3) the smoothed-particle hydrodynamics (SPH) model. This work is an extension of our previous studies [1–4] that used deterministic air blast models for lightning mechanical damage prediction. Stochastic variations in composite material properties were generated using the Box-Muller transformation algorithm with the mean (i.e., room temperature experimental data) and their standard deviations (i.e., 10% of the mean herein as reference). The predicted dynamic responses and corresponding damage initiation prediction for composites under equivalent air blast loading were comparable for the deterministic and stochastic models. Overall, the domains with displacement, von-Mises stress, and damage initiation contours predicted in the stochastic models were somewhat sporadic and asymmetric along the fiber’s local orientation and varied intermittently. This suggests the significance of local property variations in lightning mechanical damage prediction. Thus, stochastic air blast models may provide a more accurate lightning mechanical damage approximation than traditional (deterministic) air blast models. All stochastic models proposed in this work demonstrated satisfactory accuracy compared to the baseline models, but required substantial computational time due to the random material model generation/assignment process, which needs to be optimized in future work.


Predicting The Impact Of Utility Lighting Rebate Programs On Promoting Industrial Energy Efficiency: A Machine Learning Approach, Phillip Shook, Jun-Ki Choi Aug 2022

Predicting The Impact Of Utility Lighting Rebate Programs On Promoting Industrial Energy Efficiency: A Machine Learning Approach, Phillip Shook, Jun-Ki Choi

Mechanical and Aerospace Engineering Faculty Publications

Implementation costs are a major factor in manufacturers' decisions to invest in energy-efficient technologies. Emerging technologies in lighting systems, however, typically require small investment costs and offer short, simple payback periods, due, in part, to federal, state, and utility incentive programs. Recently, however, certain state and federal mandates have reduced the support for and efficacy of electricity utility incentivizing programs. To determine the impact of such support programs, this study examined historical data regarding lighting retrofit savings, implementation costs, and utility rebates gathered from 13 years of industrial energy audits by a U.S. Department of Energy Industrial Assessment Center in …


Schlieren Techniques For Observations Of Long Positive Sparks: Review And Application, Junjia He, Xiankang Wang, Xiangen Zhao, Juhyeong Lee, Yaping Du, Xiaopeng Liu, Quan Gan, Yang Liu, Yuqin Liao Jun 2022

Schlieren Techniques For Observations Of Long Positive Sparks: Review And Application, Junjia He, Xiankang Wang, Xiangen Zhao, Juhyeong Lee, Yaping Du, Xiaopeng Liu, Quan Gan, Yang Liu, Yuqin Liao

Mechanical and Aerospace Engineering Faculty Publications

Understanding the mechanism of positive leader discharge is important in lightning protection engineering and the external insulation design in high voltage power transmission systems. During the propagation of a positive leader, some processes without light-emitting, for example, the insulation recovery process after the breakdown, cannot be observed by optical photography techniques. With the combination of the digital high-speed imaging system, the conventional Schlieren techniques offer new vistas in the long air gap discharge observation. The important features of high spatial resolution, high sensitivity, and easy arrangement make Schlieren techniques powerful and effective tools for characterising the discharge processes without light-emitting. …


An Improved Method To Estimate Savings From Thermal Comfort Control In Residences From Smart Wi-Fi Thermostat Data, Abdulelah D. Alhamayani, Qiancheng Sun, Kevin P. Hallinan Jun 2022

An Improved Method To Estimate Savings From Thermal Comfort Control In Residences From Smart Wi-Fi Thermostat Data, Abdulelah D. Alhamayani, Qiancheng Sun, Kevin P. Hallinan

Mechanical and Aerospace Engineering Faculty Publications

The net-zero global carbon target for 2050 needs both expansion of renewable energy and substantive energy consumption reduction. Many of the solutions needed are expensive. Controlling HVAC systems in buildings based upon thermal comfort, not just temperature, uniquely offers a means for deep savings at virtually no cost. In this study, a more accurate means to quantify the savings potential in any building in which smart WiFi thermostats are present is developed. Prior research by Alhamayani et al. leveraging such data for individual residences predicted cooling energy savings in the range from 33 to 47%, but this research was based …


A Review Of Avian-Inspired Morphing For Uav Flight Control, Christina Harvey, Lawren L. Gamble, Christian R. Bolander, Douglas F. Hunsaker, James J. Joo, Daniel J. Inman Apr 2022

A Review Of Avian-Inspired Morphing For Uav Flight Control, Christina Harvey, Lawren L. Gamble, Christian R. Bolander, Douglas F. Hunsaker, James J. Joo, Daniel J. Inman

Mechanical and Aerospace Engineering Faculty Publications

The impressive maneuverability demonstrated by birds has so far eluded comparably sized uncrewed aerial vehicles (UAVs). Modern studies have shown that birds’ ability to change the shape of their wings and tail in flight, known as morphing, allows birds to actively control their longitudinal and lateral flight characteristics. These advances in our understanding of avian flight paired with advances in UAV manufacturing capabilities and applications has, in part, led to a growing field of researchers studying and developing avian-inspired morphing aircraft. Because avian-inspired morphing bridges at least two distinct fields (biology and engineering), it becomes challenging to compare and contrast …


Six-Bar Linkage Models Of A Recumbent Tricycle Mechanism To Increase Power Throughput In Fes Cycling, Nicholas A. Lanese, David H. Myszka, Anthony L. Bazler, Andrew P. Murray Feb 2022

Six-Bar Linkage Models Of A Recumbent Tricycle Mechanism To Increase Power Throughput In Fes Cycling, Nicholas A. Lanese, David H. Myszka, Anthony L. Bazler, Andrew P. Murray

Mechanical and Aerospace Engineering Faculty Publications

This paper presents the kinematic and static analysis of two mechanisms to improve power throughput for persons with tetra- or paraplegia pedaling a performance tricycle via FES. FES, or functional electrical stimulation, activates muscles by passing small electrical currents through the muscle creating a contraction. The use of FES can build muscle in patients, relieve soreness, and promote cardiovascular health. Compared to an able-bodied rider, a cyclist stimulated via FES produces an order of magnitude less power creating some notable pedaling difficulties especially pertaining to inactive zones. An inactive zone occurs when the leg position is unable to produce enough …


Attainable Moment Set And Actuation Time Of A Bio-Inspired Rotating Empennage, Christian R. Bolander, Douglas F. Hunsaker, David Myszka, James J. Joo Jan 2022

Attainable Moment Set And Actuation Time Of A Bio-Inspired Rotating Empennage, Christian R. Bolander, Douglas F. Hunsaker, David Myszka, James J. Joo

Mechanical and Aerospace Engineering Faculty Publications

Future tactical aircraft will likely demonstrate improvements in efficiency, weight, and control by implementing bio-inspired control systems. This work analyzes a novel control system for a fighter aircraft inspired by the function of – and the degrees of freedom available in – a bird’s tail. The control system is introduced to an existing fighter aircraft design by removing the vertical tail and allowing the horizontal tail surfaces to rotate about the roll axis. Using a low-fidelity aerodynamic model, an analysis on the available controlling moments and actuation speeds of the baseline aircraft is compared to that of the bio-inspired rotating …