Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Aerospace Engineering

Compact Electrospray Propulsion Systems For Small Form-Factor Satellites: An Orbital Performance Survey & Platform Design, Alberto Meza Dec 2022

Compact Electrospray Propulsion Systems For Small Form-Factor Satellites: An Orbital Performance Survey & Platform Design, Alberto Meza

Open Access Theses & Dissertations

Over the past decades, small form-factor satellites such as CubeSats have remained as one of the most accessible platforms to reach space for universities, research institutions, private and governmental entities to perform a wide range of missions. This paper presents a survey into the design and implementation of an electrospray rail thruster, to be integrated to the CubeSat platform. The design investigated features propellant tanks for each individual thruster embedded inside the rail of a standard 1U CubeSat. The capabilities of utilizing the electrospray thruster as an attitude & determination control system was also investigated in which, a pointing accuracy …


Project Management And Systems Engineering Framework For Educational Cubesat Missions, Bailey Garrett Dec 2022

Project Management And Systems Engineering Framework For Educational Cubesat Missions, Bailey Garrett

Master's Theses

The rising complexity of CubeSat missions and the unique challenges faced by educational CubeSat programs lead to high rates of mission failure. Implementing project management and systems engineering practices can alleviate these challenges and improve mission success rates for educational CubeSat developers. However, existing project management and systems engineering resources are too cumbersome and often assume the student has a base-level understanding of project management and systems engineering fundamentals. A new universal project management and systems engineering framework was created and tailored specifically to the needs of an educational CubeSat mission. The framework was designed to accommodate first-time CubeSat developers, …


Uv Space Imager Enclosure Coating, David Silva Cortez, Victor Alexander Rempel Dekhtyar, Maria L. Muñoz Jun 2022

Uv Space Imager Enclosure Coating, David Silva Cortez, Victor Alexander Rempel Dekhtyar, Maria L. Muñoz

Mechanical Engineering

The goal of this project is to reduce the amount of stray light entering an ultraviolet (UV) imager through absorption. This report outlines the use of ZnO nanoparticles mixed in an epoxy matrix for use in a CubeSat enclosure. Through testing, our team verified that the ZnO and epoxy coating experienced a peak absorption between 360-370 nm. The epoxy mixture with the .75% by weight ZnO nanoparticles absorbed up to 99.9 % of UV light at its peak. The effect on material properties, such as Young’s modulus and ultimate tensile strength, was also tested. Tensile tests demonstrated that adding ZnO …


Orbital Debris Analysis And Orbital Decay Analysis Of Arksat-2, Will Stuff May 2022

Orbital Debris Analysis And Orbital Decay Analysis Of Arksat-2, Will Stuff

Mechanical Engineering Undergraduate Honors Theses

ARKSAT-2 is a cube satellite developed by the University of Arkansas for its second CubeSat mission. There are two objectives of the ARKSAT-2 mission. The first objective of this mission is to test a novel cold gas thruster propulsion system using water-propylene propellant. This propulsion system will be used for attitude control of the satellite. The second objective for the ARKSAT-2 mission is to test a Solid-State Inflation Balloon (SSIB) that has been designed and developed for this mission. The SSIB is designed to be a simple and cost-effective method for deorbiting the vehicle. In cube satellites, a software known …


Failure Mode, Effects And Criticality Analysis Of A Very Low Earth Orbit Cubesat Mission, Robb Christopher Borowicz May 2022

Failure Mode, Effects And Criticality Analysis Of A Very Low Earth Orbit Cubesat Mission, Robb Christopher Borowicz

Mechanical & Aerospace Engineering Theses & Dissertations

When space programs launch vehicles into orbit, multiple failures could arise throughout the mission and corrective actions are often not an option. Applying reliability engineering approaches during the design phase focuses on analyzing risk by anticipating potential failures and mitigating uncertainties in the design. Old Dominion University, in partnership with the U.S. Coast Guard Academy, and the U.S. Air Force Institute of Technology designed and developed a 3U CubeSat mission to validate on-orbit, three space technology payloads. Mission SeaLion will fly as a secondary payload on stage two of Northrop Grumman’s Antares rocket and will be deployed in a very …


Satellite Tt&C For Cubesats With Applications For Grissom-1, Michael J. Bittle Mar 2022

Satellite Tt&C For Cubesats With Applications For Grissom-1, Michael J. Bittle

Theses and Dissertations

This thesis describes the assessment and analysis performed to characterize the communication subsystem used for command and telemetry transmission in support of the Grissom-1 Mission (GM1). The GM1 is unique in that it represents the pathfinder for a standardized 6U bus that serves as the basis for future CubeSat missions to host a variety of technical and scientific payloads, as prioritized by the Department of Defense, requiring flight demonstration or access to the orbital environment. Lab-based testing within an anechoic chamber provided link margin data required to characterize the command and telemetry links of the GM1. Experimental data describing the …


Underactuated Attitude Control Of A Cubesat Using Cold Gas Thrusters And Nonlinear Control Methods, Adam S. Cottrell Mar 2022

Underactuated Attitude Control Of A Cubesat Using Cold Gas Thrusters And Nonlinear Control Methods, Adam S. Cottrell

Theses and Dissertations

Impulsive thrusters on small satellites, such as CubeSats, are typically used for attitude control. However, to become more agile, small CubeSats must also look to propulsion systems utilizing impulsive thrusters, such as cold-gas, for translational maneuvers. The combined thrust vector is often misaligned with the system's center of mass resulting in a disturbance torque. This must be counteracted by either an attitude determination and control system (ADCS), additional thrusters, or a control method to keep the satellite's attitude at or near equilibrium. Nonlinearities generated by the impulsive maneuvers are overcome via control techniques explored in this research to include on-off …


Utilization Of Characteristic Modal Analysis For Antenna Design Needed For An Afit Satellite, Scott C. Podlogar Mar 2022

Utilization Of Characteristic Modal Analysis For Antenna Design Needed For An Afit Satellite, Scott C. Podlogar

Theses and Dissertations

Antenna design is a pervasive, growing field for electrical engineers. As the number of new materials and techniques increase so too does the demand and requirements pushing forth new innovative ideas. Among these ideas is a leading edge analytic technique called Characteristic Modal Analysis (CMA) originally credited to Garbacz and Turpin. CMA works to break down the current distribution along a structure in a way that can offer great insights into how that structure operates as an antenna. This technique has great merits in post design analytics but it is rarely seen to be integrated into the design process. This …