Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Discipline
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 211 - 240 of 17951

Full-Text Articles in Engineering

New Dual Modality Technique Of Gamma-Ray Densitometry (Grd) And Optical Fiber Probe (Ofp) To Investigate Line-Averaged Diameter Profiles Of Gas, Liquid, And Solid Holdups Along The Height Of A Slurry Bubble Column, Omar Farid, Binbin Qi, Sebastián Uribe, Muthanna H. Al-Dahhan Nov 2023

New Dual Modality Technique Of Gamma-Ray Densitometry (Grd) And Optical Fiber Probe (Ofp) To Investigate Line-Averaged Diameter Profiles Of Gas, Liquid, And Solid Holdups Along The Height Of A Slurry Bubble Column, Omar Farid, Binbin Qi, Sebastián Uribe, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

A new hybrid measurement technique was developed and employed to study line-averaged three-phase holdup distribution in a Slurry Bubble Column Reactor (SBCR) using gamma-ray densitometry (GRD) and point optical fiber probe (OFP) techniques. The OFP technique was used to measure the local gas holdup at 45 nodes in the cross-section area of the SBCR at three different axial levels. Thus, the GRD technique measured the spectrum of the SBCR for two different orientations simultaneously with the OFP technique at the same operating conditions to determine the solid holdup distribution radially and axially. The line-averaged solid holdup for 25% solids loading …


Cement-Based Materials With Solid-Gel Phase Change Materials For Improving Energy Efficiency Of Building Envelope, Zhuo Liu, Jiang Du, Ryan Steere, Joshua P. Schlegel, Kamal Khayat, Weina Meng Nov 2023

Cement-Based Materials With Solid-Gel Phase Change Materials For Improving Energy Efficiency Of Building Envelope, Zhuo Liu, Jiang Du, Ryan Steere, Joshua P. Schlegel, Kamal Khayat, Weina Meng

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

This paper evaluated the cement-based materials incorporated with novel solid-gel phase change materials (PCMs) for improving the energy efficiency of building envelopes. This novel PCM is form-stable, which will not leak as solid-liquid PCMs do and not need encapsulation, and it features high energy-storage capacity. Experimental results showed that the thermal properties of cement-based materials were improved as the increase of PCM content. A 30% replacement of sand by volume with PCM can increase the latent heat of the mixture from around 0 to 7 J/g and decrease the thermal conductivity of PCM mortar based on the generalized self-consistent (GSC) …


Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou Nov 2023

Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing (AM) simulations are effective for materials that are well characterized and published; however, for newer or proprietary materials, they cannot provide accurate results due to the lack of knowledge of the material properties. This work demonstrates the process of the application of mathematical search algorithms to develop an optimized material dataset which results in accurate simulations for the laser directed energy deposition (DED) process. This was performed by first using a well-characterized material, Ti-64, to show the error in the predicted melt pool was accurate, and the error was found to be less than two resolution steps. Then, …


Development Of Eco-Friendly Chitosan-G-Polyacrylamide Preformed Particle Gel For Conformance Control In High-Temperature And High-Salinity Reservoirs, Reem Elaf, Ahmed Ben Ali, Mohammed Saad, Ibnelwaleed A. Hussein, Baojun Bai Nov 2023

Development Of Eco-Friendly Chitosan-G-Polyacrylamide Preformed Particle Gel For Conformance Control In High-Temperature And High-Salinity Reservoirs, Reem Elaf, Ahmed Ben Ali, Mohammed Saad, Ibnelwaleed A. Hussein, Baojun Bai

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Oil and gas extraction has become challenging nowadays due to the accompanying amount of excess produced water that results in poor recoverability of hydrocarbon, besides other environmental and economic isues. A recent and efficient technology for conformance control is the injection of preformed particle gels (PPGs), which results in a more practical production process. Nevertheless, existing treatments fail in high-temperature reservoirs, are extremely sensitive to salinity, and are hazardous. The characteristics of the designed PPG, such as mechanical strength and thermal durability, is mainly depend on their crosslinking method. Polysaccharides-based gels prepared by physical crosslinking are weaker than the ones …


Landscape Position And Cover Crops Affects Crop Yields In A Terrace-Tiled Field, Harpreet Kaur, Kelly A. Nelson, Gurbir Singh, Gurpreet Kaur, Katherine R. Grote Nov 2023

Landscape Position And Cover Crops Affects Crop Yields In A Terrace-Tiled Field, Harpreet Kaur, Kelly A. Nelson, Gurbir Singh, Gurpreet Kaur, Katherine R. Grote

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Cover Crops (CC) Provide Soil Ecosystem Benefits Including Reduced Soil Erosion, Improved Soil Health, and Nutrient Cycling. However, the Effect of CCs on Rotational Commodity Crop Grain Yields and Nutrient Uptake May Vary at Different Landscape Positions and under Different Soil Moisture Dynamics. the Objectives of This Study Were to Determine the Influence of CCs in a Terraced Field on Soil Moisture at Crop Emergence and Reproductive Stages of Corn (Zea Mays L) and Soybean (Glycine Max L. Merr.) Development, and Evaluate CCmix (Wheat (Triticum Aestivum L.), Radish (Raphanus Raphanistrum Subsp. Sativus), and Turnip (Brassica Rapa Subsp. Rapa)) and Cereal …


Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang Nov 2023

Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This Letter reports the performance of femtosecond (fs) laser-written distributed fiber Bragg gratings (FBGs) under high-temperature conditions up to 1600°C and explores the impact of rapid heat treatment on signal-to-noise ratio (SNR) enhancement. FBGs are essential for reliable optical sensing in extreme temperature environments. Comprehensive tests demonstrate the remarkable performance and resilience of FBGs at temperatures up to 1600°C, confirming their suitability for deployment in such conditions. The study also reveals significant fringe visibility improvements of up to ∼10 dB on a 1-m-long sapphire optical fiber through rapid heat treatment, representing a first-time achievement to the best of our knowledge. …


Vacancy Ordering In Zirconium Carbide With Different Carbon Contents, Yue Zhou, Jeremy Lee Watts, Cheng Li, William Fahrenholtz, Gregory E. Hilmas Nov 2023

Vacancy Ordering In Zirconium Carbide With Different Carbon Contents, Yue Zhou, Jeremy Lee Watts, Cheng Li, William Fahrenholtz, Gregory E. Hilmas

Materials Science and Engineering Faculty Research & Creative Works

Zirconium carbide (ZrCx) ceramics with different carbon contents were prepared by reactive hot-pressing. The rock-salt structure of ZrCx was the only phase detected by x-ray diffraction of the hot pressed ceramics. The relative densities of ZrCx decreased as carbon content increased, in general. The actual carbon contents were measured by completely oxidizing the ZrCx ceramics to ZrO2. For most compositions, the actual carbon contents were higher than nominal batched compositions, presumably due to carbon uptake from the graphite furnace and hot press dies. Selected area electron diffraction and neutron powder diffraction revealed the presence of carbon vacancy ordering …


Effect Of Type And Quantity Of Inherent Alkali Cations On Alkali-Silica Reaction, Pengfei Ma, Jiaoli Li, Jincheng Bai, Ying Zhuo, Lingyu Chi, Yanping Zhu, Zhenhua Shi, Hongyan Ma, Genda Chen Nov 2023

Effect Of Type And Quantity Of Inherent Alkali Cations On Alkali-Silica Reaction, Pengfei Ma, Jiaoli Li, Jincheng Bai, Ying Zhuo, Lingyu Chi, Yanping Zhu, Zhenhua Shi, Hongyan Ma, Genda Chen

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

In this study, the macroscopical expansion induced by alkali-silica reaction (ASR) and its corresponding ASR products are investigated using ordinary Portland cement (OPC) mortar specimens with a gradient of boosted alkalis. Experimental results show that the expansion increases with the concentration of inherent alkalis. Sodium-boosted samples expand approximately three times as much as potassium-boosted samples. ASR gels that are present in aggregate veins are calcium-free and amorphous; the atomic ratios of ASR gels are nearly independent of the type and quantity of alkali cations. Aggregate ASR gel exudation occurs in high (≥2.5 %) sodium cases and produces potential Na-shlykovite. Crystalline …


Advancing Airport Project Delivery: A Comparison Of Design-Build And Traditional Methods In Terms Of Schedule And Cost Performance, Ramy Khalef, Islam H. El-Adaway Nov 2023

Advancing Airport Project Delivery: A Comparison Of Design-Build And Traditional Methods In Terms Of Schedule And Cost Performance, Ramy Khalef, Islam H. El-Adaway

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Current airport infrastructure is in a state of decline, with reports scoring it at an underperforming classification of D+. To address this issue, significant improvement and advancement of the infrastructure is needed. With backing on an authoritative level, the nation can expect an increase in the number of improvement projects. Airport stakeholders have long been accustomed to delivering their projects using traditional methods, such as design-bid-build (DBB). Design-build (DB) is an alternative delivery method that has added benefits for project metrics, such as schedule and cost performance. There is a lack of research evaluating DB within the context of airport …


Evaluation Of Residual Flexural Behavior Of Corroded Fiber-Reinforced Super Workable Concrete Beams, Jingjie Wei, Nima Farzadnia, Alfred Addai-Nimoh, Kamal Khayat Nov 2023

Evaluation Of Residual Flexural Behavior Of Corroded Fiber-Reinforced Super Workable Concrete Beams, Jingjie Wei, Nima Farzadnia, Alfred Addai-Nimoh, Kamal Khayat

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This Study Investigates the Effect of Macro Synthetic Fiber (MSF) Volume and Crack Widths on Corrosion of the Reinforcing Bars and Residual Flexural Behavior of Fiber-Reinforced Super-Workable Concrete (FR-SWC) Beams Exposed to Accelerated Corrosion. FR-SWC Beams Prepared with 0, 0.33%, and 0.66% MSF Were Pre-Cracked at 0.2-, 0.4-, and 0.75-Mm Widths Before Corrosion Testing. the Controlled Crack Width Was Initiated in One Set of Beams that Were Then Unloaded. the Crack Width Was Maintained for Another Set of Beams during Corrosion Testing by Inserting a Shim. Test Results Showed that the Use of 0.33% and 0.66% MSF Reduced Crack Development …


Demo-Abstract: A Dtn System For Tracking Miners Using Gae-Lstm And Contact Graph Routing In An Underground Mine, Abhay Goyal, Sanjay Kumar Madria, Samuel Frimpong Oct 2023

Demo-Abstract: A Dtn System For Tracking Miners Using Gae-Lstm And Contact Graph Routing In An Underground Mine, Abhay Goyal, Sanjay Kumar Madria, Samuel Frimpong

Computer Science Faculty Research & Creative Works

Localization and prediction of movement of miners in underground mines have been a constant problem more so during a mine disaster. Due to the unavailability of GPS signals, the pillars are used as a method to locate these miners, and thus, location prediction is also carried out with reference to these pillars. In this work, we demon- strate a Delay-tolerant Network (DTN) system called Miner-Finder that leverages Machine Learning (ML) framework (GAE-LSTM) that works on edge devices (e.g., mobile phones, tablets) to predict the location of miners in an underground mine. The information such as speed, angle, time, nearest pillar …


Planning For The Lake Izabal Basin Research Endeavor (Libre) Continental Scientific Drilling Project In Eastern Guatemala, Jonathan Obrist-Farner, Andreas Eckert, Peter M.J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry Oct 2023

Planning For The Lake Izabal Basin Research Endeavor (Libre) Continental Scientific Drilling Project In Eastern Guatemala, Jonathan Obrist-Farner, Andreas Eckert, Peter M.J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

As Earth's atmospheric temperatures and human populations increase, more people are becoming vulnerable to natural and human-induced disasters. This is particularly true in Central America, where the growing human population is experiencing climate extremes (droughts and floods), and the region is susceptible to geological hazards, such as earthquakes and volcanic eruptions, and environmental deterioration in many forms (soil erosion, lake eutrophication, heavy metal contamination, etc.). Instrumental and historical data from the region are insufficient to understand and document past hazards, a necessary first step for mitigating future risks. Long, continuous, well-resolved geological records can, however, provide a window into past …


Evaluation Of Feasibility And Performance Of Foamed Fire-Resistant Coating Materials, Anyou Zhu, Hanli Wu, Yizhuang David Wang, Jenny Liu Oct 2023

Evaluation Of Feasibility And Performance Of Foamed Fire-Resistant Coating Materials, Anyou Zhu, Hanli Wu, Yizhuang David Wang, Jenny Liu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

A preliminary study found high-performance cement mortar, geopolymer mortar, and magnesium phosphate cement mortar (MPCM) have the potential as new fire-resistant materials. In this study, foam was added to these three fire-resistant materials to further improve their rheological, mechanical, and fire-resistant performance and reduce costs. Systematic design and experimental programs were conducted. The results showed the addition of foam enhanced workability, adhesiveness, and fire resistance, allowing the materials to withstand higher temperatures and further delay heat transfer. A mixture of 70% MPCM and 30% foam was identified as the optimum design, which could withstand 1000 °C with low heat transfer …


Improving Rheological And Thermal Performance Of Gilsonite-Modified Binder With Phase Change Materials, Farshad Saberi K., Yizhuang David Wang, Jenny Liu Oct 2023

Improving Rheological And Thermal Performance Of Gilsonite-Modified Binder With Phase Change Materials, Farshad Saberi K., Yizhuang David Wang, Jenny Liu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Gilsonite, as a type of natural asphalt binder, has been used to improve the high-temperature performance of regular asphalt binders. However, the addition of Gilsonite may compromise binders' low-temperature thermal cracking resistance. In this research, polyethylene glycol (PEG), as one type of the phase change materials (PCMs), was used as an innovative material to balance the impacts of Gilsonite on high and low performance of asphalt binders. The dosages of Gilsonite and PEG were first determined based on the materials' rheological behaviors at low temperatures. The performance of the PEG-Gilsonite-modified binder was then fully evaluated in terms of the resistance …


On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar Oct 2023

On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar

Materials Science and Engineering Faculty Research & Creative Works

Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder's carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models' prediction performance and interpretability. This …


The Investigation Of A Likely Scenario For Natural Tornado Genesis And Evolution From An Initial Instability Profile, Alexios Nicolas Philippou, Kakkattukuzhy M. Isaac Oct 2023

The Investigation Of A Likely Scenario For Natural Tornado Genesis And Evolution From An Initial Instability Profile, Alexios Nicolas Philippou, Kakkattukuzhy M. Isaac

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A likely mechanism for the little-understood tornado genesis is proposed and its numerical implementation is presented. The Burgers-Rott vortex with its axis in the vertical direction is introduced as an instability mechanism, and the flow field then evolves under the influence of the atmospheric pressure, temperature and density variations with altitude. Buoyancy effects are implemented using the Boussinesq model. Results are presented and discussed for a set of conditions including mesh type and size, different turbulence models, and a few different boundary conditions. Post-processed results of the transient simulations including animations contain a wealth of information to help analyze tornado …


Rilem Tc 266-Mrp: Round-Robin Rheological Tests On High Performance Mortar And Concrete With Adapted Rheology—Evaluating Structural Build-Up At Rest Of Mortar And Concrete, Sofiane Amziane, Kamal Khayat, Mohammed Sonebi, Arnaud Perrot Oct 2023

Rilem Tc 266-Mrp: Round-Robin Rheological Tests On High Performance Mortar And Concrete With Adapted Rheology—Evaluating Structural Build-Up At Rest Of Mortar And Concrete, Sofiane Amziane, Kamal Khayat, Mohammed Sonebi, Arnaud Perrot

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This Paper Presents the Results of a Round-Robin Testing Program Undertaken by RILEM TC-266-Measuring Rheological Properties of Cement-Based Materials in May 2018 at the Université D'Artois in Bethune, France. Seven Types of Rheometers Were Compared; They Consisted of Four ICAR Rheometers, Viskomat XL Rheometer, EBT-V Rheometer, Sliding Pipe Rheometer (SLIPER), RheoCAD Rheometer, and 4SCC Rheometer, as Well as the Plate Test. This Paper Discusses the Results of the Evolution of the Static Yield Stress at Rest of Three Mortar and Five Concrete Mixtures that Were Determined using Two ICAR Rheometers, Viskomat XL, and EBT-V Rheometers, as Well as the Plate …


Enhancing Heat Transfer Performance In Simulated Fischer–Tropsch Fluidized Bed Reactor Through Tubes Ends Modifications, Laith S. Sabri, Abbas J. Sultan, Jamal M. Ali, Hasan Shakir Majdi, Muthanna H. Al-Dahhan Oct 2023

Enhancing Heat Transfer Performance In Simulated Fischer–Tropsch Fluidized Bed Reactor Through Tubes Ends Modifications, Laith S. Sabri, Abbas J. Sultan, Jamal M. Ali, Hasan Shakir Majdi, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

Fluidized bed reactors are essential in a wide range of industrial applications, encompassing processes such as Fischer–Tropsch synthesis and catalytic cracking. The optimization of performance and reduction in energy consumption in these reactors necessitate the use of efficient heat transfer mechanisms. The present work examines the considerable impact of tube end geometries, superficial gas velocity, and radial position on heat transfer coefficients within fluidized bed reactors. It was found that the tapered tube end configurations have been empirically proven to improve energy efficiency in fluidized bed reactors significantly. For example, at a superficial gas velocity of 0.4 m/s, the tapered …


Mantle Flow Underneath The South China Sea Revealed By Seismic Anisotropy, Fansheng Kong, Rui Gao, Stephen S. Gao, Kelly H. Liu, Weiwei Ding, Xiongwei Niu, Aiguo Ruan, Pingchuan Tan, Jianke Fan, Shaoping Lu, Zhengyi Tong, Liqun Cheng, Wenfei Gong, Yanghui Zhao Oct 2023

Mantle Flow Underneath The South China Sea Revealed By Seismic Anisotropy, Fansheng Kong, Rui Gao, Stephen S. Gao, Kelly H. Liu, Weiwei Ding, Xiongwei Niu, Aiguo Ruan, Pingchuan Tan, Jianke Fan, Shaoping Lu, Zhengyi Tong, Liqun Cheng, Wenfei Gong, Yanghui Zhao

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

It Has Long Been Established that Plastic Flow in the Asthenosphere Interacts Constantly with the overlying Lithosphere and Plays a Pivotal Role in Controlling the Occurrence of Geohazards Such as Earthquakes and Volcanic Eruptions. Unfortunately, Accurately Characterizing the Direction and Lateral Extents of the Mantle Flow Field is Notoriously Difficult, Especially in Oceanic Areas Where Deployment of Ocean Bottom Seismometers (OBSs) is Expensive and Thus Rare. in This Study, by Applying Shear Wave Splitting Analyses to a Dataset Recorded by an OBS Array that We Deployed between Mid-2019 and Mid-2020 in the South China Sea (SCS), We Show that the …


Switching Of Control Mechanisms During The Rapid Solidification Of A Melt Pool, Yijia Gu, Jiandong Yuan, Lianyi Chen Oct 2023

Switching Of Control Mechanisms During The Rapid Solidification Of A Melt Pool, Yijia Gu, Jiandong Yuan, Lianyi Chen

Materials Science and Engineering Faculty Research & Creative Works

The Solidification of Alloys is Typically Controlled by Solute Diffusion Due to the Solute Partitioning Happening at the Solid-Liquid Interface. in This Study, We Show that the Switching from Solute Diffusion-Controlled Growth to Thermal Diffusion-Controlled Growth May Happen at the Solidification Front during Rapid Solidification Processes of Alloys Such as Additive Manufacturing using a Phase-Field Model. the Switching is Found to Be Triggered by the Cooling of the Solid-Liquid Interface When It Becomes Colder Than the Solidus Temperature. the Switching Introduces a Sudden Jump of Growth Velocity, an Increase in Solute Concentration, and the Refining of the Resulting Microstructures. All …


Mechanism Underlying Effect Of Expansive Agent And Shrinkage Reducing Admixture On Mechanical Properties And Fiber-Matrix Bonding Of Fiber-Reinforced Mortar, Kamran Aghaee, Taihao Han, Aditya Kumar, Kamal Khayat Oct 2023

Mechanism Underlying Effect Of Expansive Agent And Shrinkage Reducing Admixture On Mechanical Properties And Fiber-Matrix Bonding Of Fiber-Reinforced Mortar, Kamran Aghaee, Taihao Han, Aditya Kumar, Kamal Khayat

Materials Science and Engineering Faculty Research & Creative Works

Expansive agent (EA) and shrinkage reducing admixture (SRA) are utilized to reduce shrinkage and risk of cracking in concrete. EA compensates shrinkage by initial expansion, and SRA reduces surface tension in the pore fluid. Although EA and SRA effectively reduce shrinkage, they can impair micro-structure of concrete at high contents. The shrinkage reduction effect of EA and SRA is well known; however, there is limited knowledge about their negative effect on microstructure and fiber matrix interfacial transition zone (ITZ). The current study explores the effect of using 10 % CaO-based EA, 2 % SRA, and their combination on mechanical, shrinkage, …


System Dynamic Modeling To Study The Impact Of Construction Industry Characteristics And Associated Macroeconomic Indicators On Workforce Size And Labor Retention Rate, Tamima Elbashbishy, Islam H. El-Adaway Oct 2023

System Dynamic Modeling To Study The Impact Of Construction Industry Characteristics And Associated Macroeconomic Indicators On Workforce Size And Labor Retention Rate, Tamima Elbashbishy, Islam H. El-Adaway

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Limited skilled labor has been one of the greatest challenges facing the construction industry. The COVID-19 pandemic has further exaggerated the already strained construction labor market, leading to an additional negative impact. One of the major contributors to skilled labor shortages in construction is the issue of labor retention. Overall, this is a complex and dynamic situation that requires effective and efficient simulation-based techniques to capture the interdependent relationships that affect the performance of the construction labor market. This paper fills this knowledge gap. To this end, the authors used a multistep research methodology that involved (1) identifying factors that …


Semi-Annual Progress Report #12, Missouri University Of Science And Technology. Inspire - University Transportation Center Sep 2023

Semi-Annual Progress Report #12, Missouri University Of Science And Technology. Inspire - University Transportation Center

Semi-Annual Progress Reports

No abstract provided.


Common Ground Newsletter Fall 2023, Missouri University Of Science And Technology Sep 2023

Common Ground Newsletter Fall 2023, Missouri University Of Science And Technology

Common Ground

- Free-Format Education

- S&T student selected as national ASCE ambassador

- Heart of a servant

- Exploring history, architecture of Chicago


Robotic Inspection Of Infrastructure Using Vision, Gpr, And Impact-Echo Sensors, Jizhong Xiao Sep 2023

Robotic Inspection Of Infrastructure Using Vision, Gpr, And Impact-Echo Sensors, Jizhong Xiao

INSPIRE Archived Webinars

Bridges, dams, highways, and tunnels in the U.S. are reaching their life expectancy, and thus have imperative needs for routine inspection and maintenance to ensure sustainability. It is reported that 42% of over 600,000 highway bridges in the National Bridge Inventory (NBI) have exceeded their design life of 50 years, and 42,951 bridges are rated in poor condition and classified as "structurally deficient". To inspect the structurally integrity of bridges, the inspectors also need to detect subsurface defects (i.e., delamination, voids) using NDE instruments such as GPR and impact-echo (IE) device at difficult to access components (i.e., pier, bottom side …


Introduction To 'Artificial Intelligence In Failure Analysis Of Transportation Infrastructure And Materials', Yue Hou, Qiao Dong, Dawei Wang, Jenny Liu Sep 2023

Introduction To 'Artificial Intelligence In Failure Analysis Of Transportation Infrastructure And Materials', Yue Hou, Qiao Dong, Dawei Wang, Jenny Liu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Transportation infrastructures, including roads, bridges, tunnels, stations, airports and subways, play fundamental roles in modern society. Engineering failures of transportation infrastructures may result in significant damage to the public. The traditional methods are to monitor, store and analyze the information during the infrastructure and material design, testing, construction, numerical simulations, evaluation, operation, maintenance and preservation, using mechanistic-based, material based and statistics-based approaches. In recent decades, artificial intelligence (AI) has drawn the attention of many researchers and has been used as a powerful tool to understand and analyze the engineering failures in transportation infrastructure and materials. AI has the advantages of …


In Situ Monitoring Of The Hydration Of Calcium Silicate Minerals In Cement With A Remote Fiber-Optic Raman Probe, Bohong Zhang, Wenyu Liao, Hongyan Ma, Jie Huang Sep 2023

In Situ Monitoring Of The Hydration Of Calcium Silicate Minerals In Cement With A Remote Fiber-Optic Raman Probe, Bohong Zhang, Wenyu Liao, Hongyan Ma, Jie Huang

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This study utilized a novel in situ fiber-optic Raman probe to continuously monitor the hydration progress of tricalcium silicate (C3S) and dicalcium silicate (C2S) without the need for sampling, from early hydration stage to later stages, and from fresh to hardened states of paste samples. By virtue of the remarkable ability of this technique in characterizing either dry or wet and crystalline or amorphous samples, the hydration processes of C3S and C2S pastes with different water-to-solid (w/s) ratios could be monitored from the start of the hydration reaction. The main hydration products, …


Fs-Laser Fabricated Miniature Fabry–Perot Interferometer In A No-Core Fiber For High-Temperature Applications †, Chen Zhu, Osamah Alsalman, Jie Huang Sep 2023

Fs-Laser Fabricated Miniature Fabry–Perot Interferometer In A No-Core Fiber For High-Temperature Applications †, Chen Zhu, Osamah Alsalman, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This Paper Reports a Fiber In-Line Fabry–Perot Interferometer (FPI) Fabricated in a No-Core Fiber using the Direct Femtosecond Laser Writing Technique for High-Temperature Sensing Applications. Two In-Line Reflectors Are Directly Inscribed in a No-Core Fiber to Construct a Low-Finesse FPI. Fringe Visibility Greater Than 10 DB is Obtained from the Reflection Spectra of the Fabricated No-Core Fiber FPIs. Temperature Responses of a Prototype No-Core Fiber FPI Are Characterized Up to 1000 °C. the Proposed Configuration is Compact and Easy to Fabricate, Making It Attractive for Sensing Applications in High-Temperature Harsh Environments.


Quantification Of Geodetic Strain Rate Uncertainties And Implications For Seismic Hazard Estimates, Jeremy Maurer, Kathryn Materna Sep 2023

Quantification Of Geodetic Strain Rate Uncertainties And Implications For Seismic Hazard Estimates, Jeremy Maurer, Kathryn Materna

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Geodetic velocity data provide first-order constraints on crustal surface strain rates, which in turn are linked to seismic hazard. Estimating the 2-D surface strain tensor everywhere requires knowledge of the surface velocity field everywhere, while geodetic data such as Global Navigation Satellite System (GNSS) only have spatially scattered measurements on the surface of the Earth. To use these data to estimate strain rates, some type of interpolation is required. In this study, we review methodologies for strain rate estimation and compare a suite of methods, including a new implementation based on the geostatistical method of kriging, to compare variation between …


Multifunctional Organic Monolayer-Based Coatings For Implantable Biosensors And Bioelectronic Devices: Review And Perspectives, Taral Patel, Jie Huang, Katarzyna Krukiewicz Sep 2023

Multifunctional Organic Monolayer-Based Coatings For Implantable Biosensors And Bioelectronic Devices: Review And Perspectives, Taral Patel, Jie Huang, Katarzyna Krukiewicz

Electrical and Computer Engineering Faculty Research & Creative Works

The Emerging Field of Biosensors and Bioelectronics Seeks to Exploit Biology in Combination with the Recent Advances in Engineering. Even Though Biomedical Implants Can Significantly Improve Quality of Life, Problems Following the Process of Implantation Are Still an Issue. in This Review, We Point Out Organic Monolayer-Based Coatings as a Potential Solution to the Major Limitations of Implantable Biomaterials, Including Limited Biocompatibility, the Risk of Biofouling, Bacterial Colonization, and Stability under in Vivo Conditions. at First, Selected Current and Perspective Biomaterials Are Discussed, with the Focus on their Use as Implantable Biosensors and Biomedical Electrodes. Surface Modification Strategies for Implantable …