Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Engineering

Understanding The Connection Between Blasting And Highwall Stability, Robert Quentin Eades, Kyle A. Perry Jan 2019

Understanding The Connection Between Blasting And Highwall Stability, Robert Quentin Eades, Kyle A. Perry

Mining Engineering Faculty Research & Creative Works

Surface mines continue to implement highwalls for several reasons, such as increasing recovery, improving margins, and justifying higher stripping ratios. Highwall stability is a complex issue that is dependent upon a variety of mining and geologic factors, and a safe design is necessary for a successful surface operation. To improve highwall stability, it is important to understand the connection between local geology and blasting. Explosives are employed throughout the mining industry for primary rock breakage. There are a number of controlled blasting techniques that can be implemented to improve highwall stability. These include line drilling, smooth wall blasting, trim blasting ...


Critical Buckling And Post-Buckling Behavior Of Thin-Walled Liners Encased By Underground Pipelines In Saturated Soils, Zhaochao Li Jan 2018

Critical Buckling And Post-Buckling Behavior Of Thin-Walled Liners Encased By Underground Pipelines In Saturated Soils, Zhaochao Li

Doctoral Dissertations

"This study aims to investigate the structural stability of thin-walled liners encased in functionally-obsolete underground pipelines in saturated soil under external hydrostatic pressure, a concentrated load, temperature change or their combination, and develop a simplified circular arch model of thin-walled liners when not constrained by the pipelines. The friction and adhesion on the interface between a liner and its constraining surface (pipeline or grouting), and the pressure gradient on deeply-buried pipelines are neglected. The critical buckling load of elastic liners is analytically derived under a plane strain condition using the principle of minimum potential energy. The analytical solution is either ...


Wrinkling Of Functionally Graded Sandwich Structures Subject To Biaxial And In-Plane Shear Loads, Harold Costa Jan 2017

Wrinkling Of Functionally Graded Sandwich Structures Subject To Biaxial And In-Plane Shear Loads, Harold Costa

Masters Theses

"Benefits of a functionally graded core increasing wrinkling stability of sandwich panels have been demonstrated in a recent paper [1] where a several-fold increase in the wrinkling stress was observed, without a significant weight penalty, using a stiffer core adjacent to the facings. In the present paper wrinkling is analyzed in case where the facings are subject to biaxial compression and/or in-plane shear loading and the core is arbitrary graded through-the-thickness. Two issues addressed are the effect of biaxial or in-plane shear loads on wrinkling stability of panels with both graded and ungraded core and the verification that functional ...


Small Signal Modeling And Analysis Of Microgrid Systems, Md. Rasheduzzaman Jan 2015

Small Signal Modeling And Analysis Of Microgrid Systems, Md. Rasheduzzaman

Doctoral Dissertations

This dissertation focuses on small-signal modeling and analysis of inverter based microgrid systems. The proposed microgrid consists of two microsources placed on two different buses. The buses are connected using a distribution feeder with some impedance. The proposed microgrid can operate with the grid support, or without the grid support. When operated without the grid support, the standalone system’s microsources participate in controlling the system voltage and frequency. For a non-inertia source, such as the inverter, the load perturbations play an important role in system dynamics. In paper-I, such complex system was studied.

In the grid-tied mode, the microsources ...


Carbon Dioxide - Heavy Oil Systems: Thermodynamics, Transport And Interfacial Stability, Truynh Quoc My Duy Tran Jan 2014

Carbon Dioxide - Heavy Oil Systems: Thermodynamics, Transport And Interfacial Stability, Truynh Quoc My Duy Tran

Doctoral Dissertations

"Conventional oil recovery leaves behind around 67% of original oil in place for light oils and all of it for heavy oils. The carbon dioxide flooding process is the cheapest among the recovery methods for the next stage. The interest here lies in recovering heavy oil. When CO2 dissolves in oil, it increases the volume of oil, squeezes it out of narrow capillaries and the viscosity of oil drops by up to an order of magnitude. Starting with the available data with and without CO2 in heavy oil, the free volume theory is used to predict these physical ...


Nonlinear Development And Secondary Instability Of Traveling Crossflow Vortices, Fei Li, Meelan M. Choudhari, Lian Duan, Chau-Lyan Chang Jan 2014

Nonlinear Development And Secondary Instability Of Traveling Crossflow Vortices, Fei Li, Meelan M. Choudhari, Lian Duan, Chau-Lyan Chang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Building upon the prior research targeting the laminar breakdown mechanisms associated with stationary crossflow instability over a swept-wing configuration, this paper investigates the secondary instability of traveling crossflow modes as an alternate scenario for transition. For the parameter range investigated herein, this alternate scenario is shown to be viable unless the initial amplitudes of the traveling crossflow instability are lower than those of the stationary modes by considerably more than one order of magnitude. The linear growth predictions based on the secondary instability theory are found to agree well with both parabolized stability equations and direct numerical simulation, and the ...


Issues On Stability Of Adp Feedback Controllers For Dynamical Systems, S. N. Balakrishnan, Jie Ding, F. L. Lewis Aug 2008

Issues On Stability Of Adp Feedback Controllers For Dynamical Systems, S. N. Balakrishnan, Jie Ding, F. L. Lewis

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper traces the development of neural-network (NN)-based feedback controllers that are derived from the principle of adaptive/approximate dynamic programming (ADP) and discusses their closed-loop stability. Different versions of NN structures in the literature, which embed mathematical mappings related to solutions of the ADP-formulated problems called “adaptive critics” or “action-critic” networks, are discussed. Distinction between the two classes of ADP applications is pointed out. Furthermore, papers in “model-free” development and model-based neurocontrollers are reviewed in terms of their contributions to stability issues. Recent literature suggests that work in ADP-based feedback controllers with assured stability is growing in diverse ...


A Stabilized Rbf Collocation Scheme For Neumann Type Boundary Value Problems, Nicolas Ali Libre, Arezoo Emdadi, Edward J. Kansa, Mohammad Rahimian, Mohammad Shekarchi Jan 2008

A Stabilized Rbf Collocation Scheme For Neumann Type Boundary Value Problems, Nicolas Ali Libre, Arezoo Emdadi, Edward J. Kansa, Mohammad Rahimian, Mohammad Shekarchi

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The numerical solution of partial differential equations (PDEs) with Neumann boundary conditions (BCs) resulted from strong form collocation scheme are typically much poorer in accuracy compared to those with pure Dirichlet BCs. In this paper, we show numerically that the reason of the reduced accuracy is that Neumann BC requires the approximation of the spatial derivatives at Neumann boundaries which are significantly less accurate than approximation of main function. Therefore, we utilize boundary treatment schemes that based upon increasing the accuracy of spatial derivatives at boundaries. Increased accuracy of the spatial derivative approximation can be achieved by h-refmement reducing the ...


A Three-Dimensional Fdtd Subgridding Algorithm With Separated Temporal And Spatial Interfaces And Related Stability Analysis, Kai Xiao, David Pommerenke, James L. Drewniak Jul 2007

A Three-Dimensional Fdtd Subgridding Algorithm With Separated Temporal And Spatial Interfaces And Related Stability Analysis, Kai Xiao, David Pommerenke, James L. Drewniak

Electrical and Computer Engineering Faculty Research & Creative Works

A finite-different time-domain subgrid algorithm locally refines the mesh at regions requiring higher resolution. A novel separation of spatial and temporal subgridding interfaces is presented that allows implementing a novel spatial subgridding method and investigating the stability of each subalgorithm individually. Details are given for a spatial subgridding algorithm having a 1:3 mesh ratio. In the spatial subgridding algorithm, the fine-mesh is constructed with a recessed interface and the interpolation scheme is designed to be symmetric to maintain the stability of the update process. The stability of the spatial subgridding algorithm is analyzed with a matrix method. Numerical examples ...


Nanomanipulation Using Atomic Force Microscope With Drift Compensation, Qinmin Yang, Jagannathan Sarangapani Jun 2006

Nanomanipulation Using Atomic Force Microscope With Drift Compensation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes an atomic force microscope (AFM) based force controller to push nanoparticles on the substrates since it is tedious for human. A block phase correlation-based algorithm is embedded into the controller for compensating the thermal drift during nanomanipulation. Further, a neural network (NN) is employed to approximate the unknown nanoparticle and substrate contact dynamics including the roughness effects. Using the NN-based adaptive force controller the task of pushing nanoparticles is demonstrated. Finally, using the Lyapunov-based stability analysis, the uniform ultimately boundedness (UUB) of the closed-loop signals is demonstrated


Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He Jan 2006

Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines running at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle dispersion of heat release even though such operation can significantly reduce NOx emissions and improve fuel efficiency by as much as 5-10%. A suite of neural network (NN) controller without and with reinforcement learning employing output feedback has shown ability to reduce the nonlinear cyclic dispersion observed under lean operating conditions. The neural network controllers consists of three NN: a) A NN observer to estimate the states of the engine such as total fuel and air; b) a second NN for generating virtual input ...


An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan Jan 2006

An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a ...


A Three-Dimensional Fdtd Subgridding Method With Separate Spatial And Temporal Subgridding Interfaces, Kai Xiao, David Pommerenke, James L. Drewniak Aug 2005

A Three-Dimensional Fdtd Subgridding Method With Separate Spatial And Temporal Subgridding Interfaces, Kai Xiao, David Pommerenke, James L. Drewniak

Electrical and Computer Engineering Faculty Research & Creative Works

The idea of separating the spatial and temporal subgridding interfaces is introduced in this paper. Based on this idea, the spatial and temporal subgridding algorithms can be developed and analyzed separately. The spatial algorithm was given in the previous paper. In this paper, the temporal subgridding algorithm is described and the stability is illustrated by the analytical formulation of a one-dimensional model. An FDTD code that combines the spatial and temporal subgridding algorithms is implemented. Numerical test models are calculated to show the stability and accuracy of the proposed method.


Coordination Of Ufls And Ufgc By Application Of D-Smes, Li Zhang, Yilu Liu, Mariesa Crow Jun 2005

Coordination Of Ufls And Ufgc By Application Of D-Smes, Li Zhang, Yilu Liu, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, the authors studied the coordination of under frequency load shedding (UFLS) and under frequency governor control (UFGC) by applying the distributed superconducting magnetic energy storage (D-SMES) devices. The active power of D-SMES device is controlled to eliminate the initial rapid frequency drop and allow time for the full action of UFGC to take over. The reactive power of D-SMES is controlled to stabilise the local bus voltage. The research results show that D-SMES devices can damp the quick dropping of system frequency and hold it waiting for the full activation of system spinning reserve. D-SMES can help ...


Pulse Regulation Control Technique For Integrated High-Quality Rectifier-Regulators, Mehdi Ferdowsi, Ali Emadi Feb 2005

Pulse Regulation Control Technique For Integrated High-Quality Rectifier-Regulators, Mehdi Ferdowsi, Ali Emadi

Electrical and Computer Engineering Faculty Research & Creative Works

The pulse regulation control scheme is presented and applied to the boost integrated flyback rectifier/energy storage dc/dc (BIFRED) converter as the most popular member of the integrated high-quality rectifier-regulators (IHQRR). In contrast to the conventional control techniques, the principal idea of pulse regulation is to regulate the output voltage using a series of high- and low-power pulses generated by the current of the input inductor, which is operating in discontinuous conduction mode (DCM). Analysis of the BIFRED converter operating in DCM is presented. Fundamentals of pulse regulation as well as its stability analysis and the estimation of the ...


Optimal Control Of A Class Of One-Dimensional Nonlinear Distributed Parameter Systems With Discrete Actuators, Radhakant Padhi, S. N. Balakrishnan Jan 2005

Optimal Control Of A Class Of One-Dimensional Nonlinear Distributed Parameter Systems With Discrete Actuators, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems with a finite number of actuators in the spatial domain. Unlike the existing ''approximate-then-design'' and ''design-then-approximate'' techniques, this approach does not use any approximation either of the system dynamics or of the resulting controller. The formulation has more practical significance because one can implement a set of discrete controllers with relative ease. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved through simulations ...


Low-Input-Voltage, Low-Power Boost Converter Design Issues, Jonathan W. Kimball, Theresa L. Flowers, Patrick L. Chapman Sep 2004

Low-Input-Voltage, Low-Power Boost Converter Design Issues, Jonathan W. Kimball, Theresa L. Flowers, Patrick L. Chapman

Electrical and Computer Engineering Faculty Research & Creative Works

Issues associated with boost converter design and performance are investigated when a low input voltage is used. Low-input-voltage sources include single fuel cells, single solar cells, and thermoelectric devices. The primary context is interfacing single micro fuel cells to portable electronic loads, such as mobile phones. Efficiency and circuit startup are the two most difficult issues for a low-cost design. It is shown in theory and experiment that the boost converter has a voltage collapse point. A simple startup technique is proposed that is appropriate for some applications.


A Three-Dimensional Fdtd Subgridding Algorithm Based On Interpolation Of Current Density, Kai Xiao, David Pommerenke, James L. Drewniak Aug 2004

A Three-Dimensional Fdtd Subgridding Algorithm Based On Interpolation Of Current Density, Kai Xiao, David Pommerenke, James L. Drewniak

Electrical and Computer Engineering Faculty Research & Creative Works

A three-dimensional subgridding algorithm for the finite difference time domain (FDTD) method is proposed in this paper. The method is based on interpolation of electric and magnetic current densities. The coarse-fine mesh ratio can be either 1:2 or 1:3. Results of a test model utilizing a lossless cavity excited with a dipole show no tendency of instability after 500000 time steps. The reflection in time domain at the subgridding interface was calculated to test the accuracy of the subgridding algorithm.


The Robustness Of Resource Allocation In Parallel And Distributed Computing Systems, Shoukat Ali, Howard Jay Siegel, A. A. Maciejewski Jan 2004

The Robustness Of Resource Allocation In Parallel And Distributed Computing Systems, Shoukat Ali, Howard Jay Siegel, A. A. Maciejewski

Electrical and Computer Engineering Faculty Research & Creative Works

This paper gives an overview of the material to be discussed in the invited keynote presentation by H. J. Siegel. Performing computing and communication tasks on parallel and distributed systems involves the coordinated use of different types of machines, networks, interfaces, and other resources. Decisions about how best to allocate resources are often based on estimated values of task and system parameters, due to uncertainties in the system environment. An important research problem is the development of resource management strategies that can guarantee a particular system performance given such uncertainties. We have designed a methodology for deriving the degree of ...


Measuring The Robustness Of A Resource Allocation, Shoukat Ali, A. A. Maciejewski, Howard Jay Siegel, Jong-Kook Kim Jan 2004

Measuring The Robustness Of A Resource Allocation, Shoukat Ali, A. A. Maciejewski, Howard Jay Siegel, Jong-Kook Kim

Electrical and Computer Engineering Faculty Research & Creative Works

Parallel and distributed systems may operate in an environment that undergoes unpredictable changes causing certain system performance features to degrade. Such systems need robustness to guarantee limited degradation despite fluctuations in the behavior of its component parts or environment. This research investigates the robustness of an allocation of resources to tasks in parallel and distributed systems. The main contributions are 1) a mathematical description of a metric for the robustness of a resource allocation with respect to desired system performance features against multiple perturbations in multiple system and environmental conditions, and 2) a procedure for deriving a robustness metric for ...


Development And Implementation Of New Nonlinear Control Concepts For A Ua, Vijayakumar Janardhan, Derek Schmitz, S. N. Balakrishnan Jan 2004

Development And Implementation Of New Nonlinear Control Concepts For A Ua, Vijayakumar Janardhan, Derek Schmitz, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A reconfigurable flight control method is developed to be implemented on an Unmanned Aircraft (UA), a thirty percent scale model of the Cessna 150. This paper presents the details of the UAV platform, system identification, reconfigurable controller design, development, and implementation on the UA to analyze the performance metrics. A Crossbow Inertial Measurement Unit provides the roll, pitch and yaw accelerations and rates along with the roll and pitch. The 100400 mini-air data boom from spaceage control provides the airspeed, altitude, angle of attack and the side slip angles. System identification is accomplished by commanding preprogrammed inputs to the control ...


A Continually Online Trained Neurocontroller For The Series Branch Control Of The Upfc, Ganesh K. Venayagamoorthy, Radha P. Kalyani Jan 2003

A Continually Online Trained Neurocontroller For The Series Branch Control Of The Upfc, Ganesh K. Venayagamoorthy, Radha P. Kalyani

Electrical and Computer Engineering Faculty Research & Creative Works

The crucial factor affecting the modern power systems today is load flow control. The Unified Power Flow Controller (UPFC) provides an effective means for controlling the power flow and improving the transient stability in a power network. The UPFC has fast complex dynamics and its conventional control is based on a linearized model of the power system. This paper presents the design of a neurocontroller that controls the power flow and regulates voltage along a transmission line. The continually online neurocontroller is used for controlling the series inverter of UPFC. Simulation results carried out in the PSCAD/EMTDC environment are ...


Neuro Emission Controller For Minimizing Cyclic Dispersion In Spark Ignition Engines, Pingan He, Jagannathan Sarangapani Jan 2003

Neuro Emission Controller For Minimizing Cyclic Dispersion In Spark Ignition Engines, Pingan He, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A novel neural network (NN) controller is developed to control spark ignition (SI) engines at extreme lean conditions. The purpose of neurocontroller is to reduce the cyclic dispersion at lean operation even when the engine dynamics are unknown. The stability analysis of the closed-loop control system is given and the boundedness of all signals is ensured. Results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller. The neuro controller can also be extended to minimize engine emissions with high EGR levels, where similar complex cyclic dynamics are observed. Further, the proposed approach can be applied to control ...


Output Feedback Force Control For A Parallel Turning Operation, Raghusimha Sudhakara, Robert G. Landers Jan 2003

Output Feedback Force Control For A Parallel Turning Operation, Raghusimha Sudhakara, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Parallel machine tools (i.e., machine tools capable of cutting a part with multiple tools simultaneously but independently) are being utilized more and more to increase operation productivity, decrease setups, and reduce floor space. Process control is the utilization of real-time process sensor information to automatically adjust process parameters (e.g., feed, spindle speed) to increase operation productivity and quality. To date, however, these two technologies have not been combined. This paper describes the design of an output feedback controller for a parallel turning operation that accounts for the inherent nonlinearities in the force process. An analysis of the process ...


Comparison Of Heuristic Dynamic Programming And Dual Heuristic Programming Adaptive Critics For Neurocontrol Of A Turbogenerator, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2002

Comparison Of Heuristic Dynamic Programming And Dual Heuristic Programming Adaptive Critics For Neurocontrol Of A Turbogenerator, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents the design of an optimal neurocontroller that replaces the conventional automatic voltage regulator (AVR) and the turbine governor for a turbogenerator connected to the power grid. The neurocontroller design uses a novel technique based on the adaptive critic designs (ACDs), specifically on heuristic dynamic programming (HDP) and dual heuristic programming (DHP). Results show that both neurocontrollers are robust, but that DHP outperforms HDP or conventional controllers, especially when the system conditions and configuration change. This paper also shows how to design optimal neurocontrollers for nonlinear systems, such as turbogenerators, without having to do continually online training of ...


Intelligent Control Of Turbogenerator Exciter/Turbine On The Electric Power Grid To Improve Power Generation And Stability, Ganesh K. Venayagamoorthy, Ronald G. Harley, Donald C. Wunsch Jan 2002

Intelligent Control Of Turbogenerator Exciter/Turbine On The Electric Power Grid To Improve Power Generation And Stability, Ganesh K. Venayagamoorthy, Ronald G. Harley, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

A review of the applications of intelligent control to replace/augment the conventional excitation and/or turbine control of turbogenerators on the electric power grid is presented in the paper. The intelligent controller designs are based on neural networks and adaptive critic designs (ACDs). The feedback variables are completely based on local measurements from the generators. Simulations and some practical laboratory implementations on a single-machine-infinite-bus and a three-machine power system demonstrate that intelligent controllers are much more effective than the conventional PID control for improving dynamic performance and stability of the power grid under small and large disturbances. The safety ...


Counterexample Of A Claim Pertaining To The Synthesis Of A Recurrent Neural Network, Xindi Cai, Donald C. Wunsch Jan 2002

Counterexample Of A Claim Pertaining To The Synthesis Of A Recurrent Neural Network, Xindi Cai, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

Recurrent neural networks have received much attention due to their nonlinear dynamic behavior. One such type of dynamic behavior is that of setting a fixed stable state. This paper shows a counterexample to the claim of A.N. Michel et al. (IEEE Control Systems Magazine, vol. 15, pp. 52-65, Jun. 1995), that "sparse constraints on the interconnecting structure for a given neural network are usually expressed as constraints which require that pre-determined elements of T [a real n×n matrix acting on a real n-vector valued function] be zero", for the synthesis of sparsely interconnected recurrent neural networks.


Excitation And Turbine Neurocontrol With Derivative Adaptive Critics Of Multiple Generators On The Power Grid, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2001

Excitation And Turbine Neurocontrol With Derivative Adaptive Critics Of Multiple Generators On The Power Grid, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

Based on derivative adaptive critics, neurocontrollers for excitation and turbine control of multiple generators on the electric power grid are presented. The feedback variables are completely based on local measurements. Simulations on a three-machine power system demonstrate that the neurocontrollers are much more effective than conventional PID controllers, the automatic voltage regulators and the governors, for improving the dynamic performance and stability under small and large disturbances


Robust Adaptive Critic Based Neurocontrollers For Systems With Input Uncertainties, S. N. Balakrishnan, Zhongwu Huang Jan 2000

Robust Adaptive Critic Based Neurocontrollers For Systems With Input Uncertainties, S. N. Balakrishnan, Zhongwu Huang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A two-neural network approach to solving optimal control problems is described in this study. This approach called the adaptive critic method consists of two neural networks: one is called the supervisor or critic, and the other is called an action network or controller. The inputs to both these networks are the current states of the system to be controlled. Each network is trained through an output of the other network and the conditions for optimal control. When their outputs are mutually consistent, the controller network output is optimal. The optimality is limited to the underlying model. Hence, we develop a ...


Stability Analysis Of Nonlinear Machining Force Controllers, Robert G. Landers, Yen-Wen Lu Jan 1999

Stability Analysis Of Nonlinear Machining Force Controllers, Robert G. Landers, Yen-Wen Lu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Model parameters vary significantly during a normal operation, thus, adaptive techniques have predominately been used. However, model-based techniques that carefully account for changes in the force process have again been examined due to the reduced complexity afforded by such techniques. In this paper, the effect of model parameter variations on the closed-loop stability for two model-based force controllers is examined. It was found that the stability boundary in the process parameter space can be exactly determined for force control systems designed for static force processes. For force control systems designed for first-order force processes, it was found that the stability ...