Open Access. Powered by Scholars. Published by Universities.®

Engineering Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

830 Full-Text Articles 991 Authors 195115 Downloads 36 Institutions

All Articles in Engineering Mechanics

Faceted Search

830 full-text articles. Page 1 of 11.

Wireless Power Transfer Roadway Integration, Trevor Gardner 2017 Utah State University

Wireless Power Transfer Roadway Integration, Trevor Gardner

All Graduate Theses and Dissertations

Electric vehicles represent a major accomplishment in the energy and transportation industry. Unfortunately, they are restricted to a small travel range because of limited battery life. Successful integration of wireless power transfer (WPT) systems into the infrastructure would remove the range restrictions of EVs. To successfully integrate this technology, several requirements must be met. First, the embedment process cannot interfere with the electrical performance of the inductive power transfer (IPT) system. Second, the presence of the IPT system in the pavement structure cannot negatively affect the roadway’s lifespan.

Several systems were directly embedded in roadway materials. The electrical properties ...


Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian 2017 University of Nebraska - Lincoln

Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

A four cable-driven parallel manipulator (4CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized maize field. This thesis presents the design, controls, and testing of two sub-systems in a 4CDPM: a Center of Mass Balance System (CMBS) and a Drop-Down System (DDS).

One of the factors that influences stability is the center of mass (COM) position of the end effector. An offset in COM can cause a pendulum effect or an undesired tilt angle. A center of mass balancing system is presented in this thesis to minimize the ...


Innovative Non-Thermal Food Processing Technologies Used By The Food Industry In The United States, Harlin Kaur Saroya 2017 Western Kentucky University

Innovative Non-Thermal Food Processing Technologies Used By The Food Industry In The United States, Harlin Kaur Saroya

Masters Theses & Specialist Projects

This thesis discussed the non-thermal food processing technologies being used within the United States of America. The technologies discussed in this thesis are High- Pressure Processing (HHP), Pulsed Electric Field, Pulsed Light, Irradiation, Ultra Sound, Oscillating Magnetic Fields, and Cold Atmospheric Plasma. A survey was designed and conducted to study the major reasons behind a preference for a particular technology by the organization, and the limitations for not implementing specific technologies. The survey participants were management level, food scientists and, food technologists employed by food processing companies. The questionnaire consisted of ten questions related to demographics, current technology, barriers from ...


Applied Strength Of Materials For Engineering Technology, Barry Dupen 2017 Indiana University - Purdue University Fort Wayne

Applied Strength Of Materials For Engineering Technology, Barry Dupen

Manufacturing and Construction Engineering Technology Faculty Publications

No abstract provided.


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang 2017 University of Nebraska - Lincoln

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is ...


Energy Efficient Process Heating: Managing Air Flow, Kevin Carpenter, J. Kelly Kissock 2017 Energy & Resource Solutions

Energy Efficient Process Heating: Managing Air Flow, Kevin Carpenter, J. Kelly Kissock

J. Kelly Kissock

Much energy is lost through excess air flow in and out of process heating equipment. Energy saving opportunities from managing air flow include minimizing combustion air, preheating combustion air, minimizing ventilation air, and reconfiguring openings to reduce leakage.

This paper identifies these opportunities and presents methods to quantify potential energy savings from implementing these energy-savings measures. Case study examples are used to demonstrate the methods and the potential energy savings.The method for calculating savings from minimizing combustion air accounts for improvement in efficiency from increased combustion temperature and decreased combustion gas mass flow rate.

The method for calculating savings ...


Negahban Group Report: Saw-Tooth Shear Response Of Aged Poly(Methyl Methacrylate) (Pmma), Mehrdad Negahban 2017 University of Nebraska - Lincoln

Negahban Group Report: Saw-Tooth Shear Response Of Aged Poly(Methyl Methacrylate) (Pmma), Mehrdad Negahban

Mechanical & Materials Engineering Faculty Publications

Results for isothermal saw-tooth shear loading experiments conducted on annealed and oven-cooled poly(methyl methacrylate) (PMMA) at temperatures between 50oC and 140oC. The experiments were conducted 1996.


Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield 2017 University of Nebraska-Lincoln

Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Surface Functionalization Technique • Femtosecond Laser Surface Processing (FLSP) • Utilize high power, femtosecond (10-15 s) laser pulses • Produce self-organized, multiscale surface micro/nanostructures • Diverse range of applicable substrates: semiconductors, metals, polymers, & composites

Why? • What are the different types of FLSP structures on Ti? • Physical evidence needed for FLSP formation models • Optimize FLSP of Ti for biomedical & other applications

How? • Obtain evidence of mound growth processes by examining underlying microstructure • Utilize dual beam Scanning Electron Microscope-Focused Ion Beam instrument to cross section surface structures & fabricate transmission electron microscopy samples


Elastic Wave Scattering By Arbitrarily Shaped Voids, Paul J. Schafbuch`, R. Bruce Thompson, F. J. Rizzo, Thomas J. Rudolphi 2017 Iowa State University

Elastic Wave Scattering By Arbitrarily Shaped Voids, Paul J. Schafbuch`, R. Bruce Thompson, F. J. Rizzo, Thomas J. Rudolphi

Thomas Rudolphi

This work is motivated by the need for realistic ultrasonic probability of detection (POD) models in nondestructive evaluation (NDE). Past POD models have utilized flaw farfield scattering amplitudes along with other system parameters to predict the expected signal in postulated measurement geometries [1]. However, numerical evaluations of scattering amplitudes have generally been restricted to idealized flaw shapes and, to our knowledge, no scheme to calculate scattering amplitudes of arbitrary shape has ever been implemented in 3D. Volumetric shapes with an axis of symmetry have been examined with T-matrix and MOOT [2,3] but the axisyrametric limitation precludes a large portion ...


Hypersingular Integral Equations For Crack Problems, G. Krishnasamy, Lester W. Schmerr Jr., Thomas J. Rudolphi, F. J. Rizzo 2017 Iowa State University

Hypersingular Integral Equations For Crack Problems, G. Krishnasamy, Lester W. Schmerr Jr., Thomas J. Rudolphi, F. J. Rizzo

Thomas Rudolphi

The investigation of scattering of waves by cracks in an elastic medium and by thin scatterers in an acoustic medium, via analytical and experimental methods, seems to be of continuing importance to nondestructive evaluation. On the analytical side, formulation and numerical solution of crack scattering problems using boundary integral equations is popular and effective because of the very nature of a crack, but this approach still suffers some shortcomings of an analytical nature. That is, the governing equations in their primitive form involve a hypersingular kernel function, and the usual process of regularization to lower the kernel singularity usually introduces ...


Investigation Of Electrical Defects Arising From Excessive Sidewall Force And Excessive Tensile Strain On Power Cables, Darren McConnon, Joseph Kearney, Tom Looby, James O'Shaughnessy 2017 Dublin Institute of Technology

Investigation Of Electrical Defects Arising From Excessive Sidewall Force And Excessive Tensile Strain On Power Cables, Darren Mcconnon, Joseph Kearney, Tom Looby, James O'Shaughnessy

Conference papers

The study includes a comprehensive review of the existing literature and guidelines regarding the effects of sidewall force and tensile strain on power cables during installation. The most appropriate diagnostic test methods required to analyse these effects are also assessed. The results of tests and analysis of the existing literature are then combined in an attempt to determine a realistic basis for guidelines and recommendations relevant to cable installation forces.


Deformation And Adhesion Of Soft Composite Systems For Bio-Inspired Adhesives And Wrinkled Surface Fabrication, Michael Imburgia 2017 University of Massachusetts Amherst

Deformation And Adhesion Of Soft Composite Systems For Bio-Inspired Adhesives And Wrinkled Surface Fabrication, Michael Imburgia

Doctoral Dissertations

The study of soft material deformation and adhesion has broad applicability to industries ranging from automobile tires to medical prosthetics and implants. When a mechanical load is imposed on a soft material system, a variety of issues can arise, including non-linear deformations at interfaces between soft and rigid components. The work presented in this dissertation embraces the occurrence of these non-linear deformations, leading to the design of functional systems that incorporate a soft elastomer layer with application to bio-inspired adhesives and wrinkled surface fabrication. Understanding the deformation of a soft elastomer layer and how the system loading and geometry influence ...


Tensile Specimen Punch, John Allen 2017 Central Washington University

Tensile Specimen Punch, John Allen

All Undergraduate Projects

This project comes from a need to have tensile specimens made for the MET 351, Metallurgy/Materials and Processes, and 426, Applied Strengths of Materials, labs. This punch is designed to be used with an arbor press to create the desired tensile specimen shape out of plastic blanks. The initial concept was suggested by Dr. Craig Johnson. The designs went through many changes, for example getting rid of the sides originally proposed to hold the specimen in place, and modifications to other parts to make them more efficient. Additional parts were also added to the design with the help and ...


Asme Baja Rc Car Drivetrain, Walter Lackey 2017 Central Washington University

Asme Baja Rc Car Drivetrain, Walter Lackey

All Undergraduate Projects

The ASME Baja car is a student built radio controlled car, which will compete with other schools in a variety races. The drivetrain aspect of the car must smoothly transfer power from the motor to the rear wheels of the car. The drivetrain must be designed in collaboration with the other team member’s suspension system to avoid interference. The majority of the parts in the drivetrain are purchased parts intended for various applications. These parts were chosen based on their proximity to the optimal calculated values. Power flows from the electric motor through a single gear reduction, then through ...


Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins 2017 University of Kentucky

Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins

Theses and Dissertations--Civil Engineering

The Analytical Strip Method (ASM) for the analysis of thin cylindrical shells is presented in this dissertation. The system of three governing differential equations for the cylindrical shell are reduced to a single eighth order partial differential equation (PDE) in terms of a potential function. The PDE is solved as a single series form of the potential function, from which the displacement and force quantities are determined. The solution is applicable to isotropic, generally orthotropic, and laminated shells. Cylinders may have simply supported edges, clamped edges, free edges, or edges supported by isotropic beams. The cylindrical shell can be stiffened ...


Nonlinear Dispersive Elastic Waves In Solids: Exact, Approximate, And Numerical Solutions, Romik Khajehtourian 2017 University of Colorado at Boulder

Nonlinear Dispersive Elastic Waves In Solids: Exact, Approximate, And Numerical Solutions, Romik Khajehtourian

Aerospace Engineering Sciences Graduate Theses & Dissertations

Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization ...


Hierarchical Multiscale Modeling To Inform Continuum Constitutive Models Of Soils, Erik Wallace Jensen 2017 University of Colorado at Boulder

Hierarchical Multiscale Modeling To Inform Continuum Constitutive Models Of Soils, Erik Wallace Jensen

Civil Engineering Graduate Theses & Dissertations

The behavior of soils is fundamentally the combined interactions between billions and billions of individual particles and particle matrices. For computational tractability and despite this fact, many soil models assume the material is a continuum essentially averaging the inter-particle interactions to predict the behavior of the bulk material. In recent years, multiscale modeling techniques have been developed to reintroduce the effect of the grain-scale interactions to help model situations where the continuum assumption fails, such as shear band development in triaxial tests or soil disaggregation under blast loading. One of such multiscale models called hierarchical upscaling, or global-local analysis, model ...


Finite Strain Micromorphic Elasticity, Elastoplasticity, And Dynamics For Multiscale Finite Element Analysis, Farhad Shahabi 2017 University of Colorado at Boulder

Finite Strain Micromorphic Elasticity, Elastoplasticity, And Dynamics For Multiscale Finite Element Analysis, Farhad Shahabi

Civil Engineering Graduate Theses & Dissertations

This study stands as an attempt to consider the micro-structure of materials in a continuum framework by the aid of micromorphic continuum theory in the sense of Eringen. Since classical continuum mechanics do not account for the micro-structural characteristics of materials, they cannot be used to address the macroscopic mechanical response of all micro-structured materials. In the “representative volume element (RVE)” based methods, classical continuum mechanics may be applied to analyze mechanical deformation and stresses of materials at the relevant micro-structural length-scale (such as grains of a polycrystalline metal, or sand, or metal matrix composite, etc), but when applying standard ...


Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski 2016 Wroclaw University of Technology

Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Abstract Template Resrb 2018, Wojciech M. Budzianowski 2016 Wojciech Budzianowski Consulting Services

Abstract Template Resrb 2018, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Digital Commons powered by bepress