Open Access. Powered by Scholars. Published by Universities.®

Engineering Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

833 Full-Text Articles 1,017 Authors 202,408 Downloads 41 Institutions

All Articles in Engineering Mechanics

Faceted Search

833 full-text articles. Page 1 of 11.

Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira 2018 Whirlpool Latin America

Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira

Journal of Applied Packaging Research

Packages made of corrugated paper are fundamental to the protection, transportation and handling of the appliance product market. During the storage and sales stages of a product, the package must resist compressive loads in different directions beyond moderate impacts. In this context, the objective of this work is to develop and implement a post-processor that allows the simultaneous analysis of two of the most common failure modes of packages made of corrugated paper: failure due to tensile or compressive stress limit, and failure due to local buckling, when the buckling of the faces of the corrugated paper between two peaks ...


Microstructure Design Using Graphs, Pengfei Du, Adrian Zebrowski, Jaroslaw Zola, Baskar Ganapathysubramanian, Olga Wodo 2018 Iowa State University

Microstructure Design Using Graphs, Pengfei Du, Adrian Zebrowski, Jaroslaw Zola, Baskar Ganapathysubramanian, Olga Wodo

Mechanical Engineering Publications

Thin films with tailored microstructures are an emerging class of materials with applications such as battery electrodes, organic electronics, and biosensors. Such thin film devices typically exhibit a multi-phase microstructure that is confined, and show large anisotropy. Current approaches to microstructure design focus on optimizing bulk properties, by tuning features that are statistically averaged over a representative volume. Here, we report a tool for morphogenesis posed as a graph-based optimization problem that evolves microstructures recognizing confinement and anisotropy constraints. We illustrate the approach by designing optimized morphologies for photovoltaic applications, and evolve an initial morphology into an optimized morphology exhibiting ...


Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks 2018 Chulalongkorn University Demonstration Secondary School

Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks

The International Student Science Fair 2018

We have innovated “The Energy Conversion System for Travelers” or the ECoST. With the fact that most travelers have wheeled cabin-bags, whilst walking, the wheels will rotate so why don’t we harvest electricity from this kinetic energy? We thus install our innovation, the ECoST, to the bag to generate electricity from the spinning wheels. The electricity is then kept in the storage unit and ready to charge your empty battery devices in an emergency case via a USB port. To make life easy, our ECoST was designed to replicate the power bank charging method; therefore, we can charge it ...


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian 2018 The University of Western Ontario

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is ...


Adaptive Observers For Structural Health Monitoring Of High-Rate, Time-Varying Dynamic Systems, B. S. Joyce, J. Hong, J. C. Dodson, J. C. Wolfson, Simon Laflamme 2018 University of Dayton Research Institute

Adaptive Observers For Structural Health Monitoring Of High-Rate, Time-Varying Dynamic Systems, B. S. Joyce, J. Hong, J. C. Dodson, J. C. Wolfson, Simon Laflamme

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

Safe and reliable operation of hypersonic aircraft, space structures, advanced weapon systems, and other high-rate dynamic systems depends on advances in state estimators and damage detection algorithms. High-rate dynamic systems have rapidly changing input forces, rate-dependent and time-varying structural parameters, and uncertainties in material and structural properties. While current structural health monitoring (SHM) techniques can assess damage on the order of seconds to minutes, complex high-rate structures require SHM methods that detect, locate, and quantify damage or changes in the structure’s configuration on the microsecond timescale.

This paper discusses the importance of microsecond structural health monitoring (μSHM) and some ...


A Framework For Isogeometric-Analysis-Based Design And Optimization Of Wind Turbine Blades, Austin Herrema 2018 Iowa State University

A Framework For Isogeometric-Analysis-Based Design And Optimization Of Wind Turbine Blades, Austin Herrema

Graduate Theses and Dissertations

Typical wind turbine blade design procedures employ reduced-order models almost exclusively for early-stage design; high-fidelity, finite-element-based procedures are reserved for later design stages because they entail complex workflows, large volumes of data, and significant computational expense. Yet, high-fidelity structural analyses often provide design-governing feedback such as buckling load factors. Mitigation of the issues of workflow complexity, data volume, and computational expense would allow designers to utilize high-fidelity structural analysis feedback earlier, more easily, and more often in the design process. Thus, this work presents a blade analysis framework which employs isogeometric analysis (IGA), a simulation method that overcomes many of ...


Numerical Analysis Of A Non-Polymeric Double-Network Composite, Qitong Yao 2018 Iowa State University

Numerical Analysis Of A Non-Polymeric Double-Network Composite, Qitong Yao

Graduate Theses and Dissertations

Double-network hydrogels have drawn much attention for its combined mechanical properties of high stretchability and high mechanical strength and numerous studies have been conducted on these hydrogels with specific emphasis on gel compositions and mechanisms. Additionally, there are also reports on application of double-network gel mechanisms on macro composites which achieved similar results as in the gels. In this thesis, a series of numerical simulations on designing and tuning of a double-network hydrogel inspired non-polymeric composite formed with a coiled serpentine network acting as the long-chain and a solid plate acting as the short-chain are presented. The simulation results show ...


Call For Abstracts - Resrb 2018, June 18-20, Brussels, Belgium, Wojciech M. Budzianowski 2017 Wojciech Budzianowski Consulting Services

Call For Abstracts - Resrb 2018, June 18-20, Brussels, Belgium, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Characterization Of Structural Dynamics Of The Human Head Using Magnetic Resonance Elastography, Andrew Arun Badachhape 2017 Washington University in St. Louis

Characterization Of Structural Dynamics Of The Human Head Using Magnetic Resonance Elastography, Andrew Arun Badachhape

Engineering and Applied Science Theses & Dissertations

In traumatic brain injury (TBI), the skull-brain interface, composed of three meningeal layers: the dura mater, arachnoid mater, and pia mater, along with cerebrospinal fluid (CSF) between the layers, plays a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is a noninvasive imaging modality capable of providing in vivo estimates of tissue motion and material properties. The objective of this work is to augment human and phantom MRE studies to better characterize the mechanical contributions of the skull-brain interface to improve the parameterization and validation of computational models of TBI. Three specific aims ...


The Role Of Soil Stiffness In Reverse Fault Rupture Propagation, Moises I. Buelna 2017 California Polytechnic State University, San Luis Obispo

The Role Of Soil Stiffness In Reverse Fault Rupture Propagation, Moises I. Buelna

Master's Theses and Project Reports

A nonlinear Mohr-Coulomb constitutive model with a strain dependent yield surface and non-associated flow was employed to study the plastic soil properties which affect the rate of surface fault rupture propagation in reverse events. These numerical simulations show a trend for soils with higher stiffness to have a higher rate of rupture propagation. Additionally the study shows the effects of strain softening and hardening on the rate of rupture propagation. Soils which strain harden exhibiting ductile behavior typically require more basal offset to rupture to the surface than soils which strain soften exhibiting brittle behavior. These results agree with our ...


Wireless Power Transfer Roadway Integration, Trevor Gardner 2017 Utah State University

Wireless Power Transfer Roadway Integration, Trevor Gardner

All Graduate Theses and Dissertations

Electric vehicles represent a major accomplishment in the energy and transportation industry. Unfortunately, they are restricted to a small travel range because of limited battery life. Successful integration of wireless power transfer (WPT) systems into the infrastructure would remove the range restrictions of EVs. To successfully integrate this technology, several requirements must be met. First, the embedment process cannot interfere with the electrical performance of the inductive power transfer (IPT) system. Second, the presence of the IPT system in the pavement structure cannot negatively affect the roadway’s lifespan.

Several systems were directly embedded in roadway materials. The electrical properties ...


Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime 2017 Florida International University

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime

FIU Electronic Theses and Dissertations

In this study, the effect of ultrasonic treatment (UST) parameters such as amplitude, sonication time, and melt temperature on microstructure and microhardness of Al 6061 alloy is evaluated. The effect of UST on the dispersion of tungsten disulfide (WS2) and carbon nanotubes (CNT) as reinforcement particles in Al 6061 during casting is also studied. The cast Al 6061 with UST demonstrated 32% grain size reduction and 8% increase in the microhardness for optimum processing conditions. The cavitation process induced by UST is responsible for the refinement in microstructure and increase of hardness by enhancing the degassing and nucleation process ...


Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian 2017 University of Nebraska - Lincoln

Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

A four cable-driven parallel manipulator (4CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized maize field. This thesis presents the design, controls, and testing of two sub-systems in a 4CDPM: a Center of Mass Balance System (CMBS) and a Drop-Down System (DDS).

One of the factors that influences stability is the center of mass (COM) position of the end effector. An offset in COM can cause a pendulum effect or an undesired tilt angle. A center of mass balancing system is presented in this thesis to minimize the ...


Innovative Non-Thermal Food Processing Technologies Used By The Food Industry In The United States, Harlin Kaur Saroya 2017 Western Kentucky University

Innovative Non-Thermal Food Processing Technologies Used By The Food Industry In The United States, Harlin Kaur Saroya

Masters Theses & Specialist Projects

This thesis discussed the non-thermal food processing technologies being used within the United States of America. The technologies discussed in this thesis are High- Pressure Processing (HHP), Pulsed Electric Field, Pulsed Light, Irradiation, Ultra Sound, Oscillating Magnetic Fields, and Cold Atmospheric Plasma. A survey was designed and conducted to study the major reasons behind a preference for a particular technology by the organization, and the limitations for not implementing specific technologies. The survey participants were management level, food scientists and, food technologists employed by food processing companies. The questionnaire consisted of ten questions related to demographics, current technology, barriers from ...


Feasibility Of Using Oxide Thickness Measurements For Predicting Crack Growth Rates In P91 Steel Components, Ralph Edward Huneycutt IV 2017 University of Arkansas, Fayetteville

Feasibility Of Using Oxide Thickness Measurements For Predicting Crack Growth Rates In P91 Steel Components, Ralph Edward Huneycutt Iv

Theses and Dissertations

There are only few methods available for predicting the age of cracks that are found in high

temperature structural components during service; among the promising ones is the oxide

thickness measurement technique. Oxide thickness profiles are taken from crack surfaces of

components and used for predicting the rates of crack propagation. This technique is particularly

suitable for high temperature components fabricated from ferritic steels commonly used in power

plants that run on fossil fuels. To implement this technique, it is necessary to fully understand the

kinetics of high temperature oxidation in these steels. In this study, the oxidation characteristics

of ...


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang 2017 University of Nebraska - Lincoln

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is ...


Energy Efficient Process Heating: Managing Air Flow, Kevin Carpenter, J. Kelly Kissock 2017 Energy & Resource Solutions

Energy Efficient Process Heating: Managing Air Flow, Kevin Carpenter, J. Kelly Kissock

J. Kelly Kissock

Much energy is lost through excess air flow in and out of process heating equipment. Energy saving opportunities from managing air flow include minimizing combustion air, preheating combustion air, minimizing ventilation air, and reconfiguring openings to reduce leakage.

This paper identifies these opportunities and presents methods to quantify potential energy savings from implementing these energy-savings measures. Case study examples are used to demonstrate the methods and the potential energy savings.The method for calculating savings from minimizing combustion air accounts for improvement in efficiency from increased combustion temperature and decreased combustion gas mass flow rate.

The method for calculating savings ...


Negahban Group Report: Saw-Tooth Shear Response Of Aged Poly(Methyl Methacrylate) (Pmma), Mehrdad Negahban 2017 University of Nebraska-Lincoln

Negahban Group Report: Saw-Tooth Shear Response Of Aged Poly(Methyl Methacrylate) (Pmma), Mehrdad Negahban

Mechanical & Materials Engineering Faculty Publications

Results for isothermal saw-tooth shear loading experiments conducted on annealed and oven-cooled poly(methyl methacrylate) (PMMA) at temperatures between 50oC and 140oC. The experiments were conducted 1996.


Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield 2017 University of Nebraska-Lincoln

Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Surface Functionalization Technique • Femtosecond Laser Surface Processing (FLSP) • Utilize high power, femtosecond (10-15 s) laser pulses • Produce self-organized, multiscale surface micro/nanostructures • Diverse range of applicable substrates: semiconductors, metals, polymers, & composites

Why? • What are the different types of FLSP structures on Ti? • Physical evidence needed for FLSP formation models • Optimize FLSP of Ti for biomedical & other applications

How? • Obtain evidence of mound growth processes by examining underlying microstructure • Utilize dual beam Scanning Electron Microscope-Focused Ion Beam instrument to cross section surface structures & fabricate transmission electron microscopy samples


Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George 2017 Old Dominion University

Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George

CCPO Publications

This Special Topic Section is dedicated to the life and memory of John Leask Lumley(1930-2015), professor and scientist extraordinaire.


Digital Commons powered by bepress