Open Access. Powered by Scholars. Published by Universities.®

Dynamics and Dynamical Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

146 Full-Text Articles 200 Authors 73,849 Downloads 34 Institutions

All Articles in Dynamics and Dynamical Systems

Faceted Search

146 full-text articles. Page 1 of 7.

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash 2019 The University of Western Ontario

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash

Electronic Thesis and Dissertation Repository

The aim of the present research is to understand the bouncing dynamic behavior of NEM/MEM switches in order to improve the switch performance and reliability. It is well known that the bouncing can dramatically degrade the switch performance and life; hence, in the present study, bouncing dynamics of a cantilever-based NME/MEM switch has been studied in detail. To this end, a model of a MEM switch that incorporates electrostatic force, squeeze film air damping force as well as asperity-based contact force has been proposed for an electrostatically actuated switch. An actuation force due to piezoelectric effects is further ...


Shape-Design For Stabilizing Micro-Particles In Inertial Microfluidic Flows, Aditya Kommajosula, Daniel Stoecklein, Dino Di Carlo, Baskar Ganapathysubramanian 2019 Iowa State University

Shape-Design For Stabilizing Micro-Particles In Inertial Microfluidic Flows, Aditya Kommajosula, Daniel Stoecklein, Dino Di Carlo, Baskar Ganapathysubramanian

Mechanical Engineering Publications

Design of microparticles which stabilize at the centerline of a channel flow when part of a dilute suspension is examined numerically for moderate Reynolds numbers (10≤Re≤80). Stability metrics for particles with arbitrary shapes are formulated based on linear-stability theory. Particle shape is parametrized by a compact, Non-Uniform Rational B-Spline (NURBS)-based representation. Shape-design is posed as an optimization problem and solved using adaptive Bayesian optimization. We focus on designing particles for maximal stability at the channel-centerline robust to perturbations. Our results indicate that centerline-focusing particles are families of characteristic "fish"/"bottle"/"dumbbell"-like shapes, exhibiting fore-aft asymmetry. A ...


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski 2018 Wojciech Budzianowski Consulting Services

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Creating A Computational Tool To Simulate Vibration Control For Piezoelectric Devices, Ahmet Ozkan Ozer, Emma J. Moore 2018 Western Kentucky University

Creating A Computational Tool To Simulate Vibration Control For Piezoelectric Devices, Ahmet Ozkan Ozer, Emma J. Moore

Posters-at-the-Capitol

Piezoelectric materials have the unique ability to convert electrical energy to mechanical vibrations and vice versa. This project takes a stab to develop a reliable computational tool to simulate the vibration control of a novel “partial differential equation” model for a piezoelectric device, which is designed by integrating electric conducting piezoelectric layers constraining a viscoelastic layer to provide an active and lightweight intelligent structure. Controlling unwanted vibrations on piezoelectric devices (or harvesting energy from ambient vibrations) through piezoelectric layers has been the major focus in cutting-edge engineering applications such as ultrasonic welders and inchworms. The corresponding mathematical models for piezoelectric ...


Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich 2018 Old Dominion University

Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich

Physics Faculty Publications

Proliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size. However, the stability of driven topological defects remains largely unexplored. Here we address this issue and investigate numerically ...


Dynamic Behavior Of Granular Earth Materials Subjected To Pressure-Shear Loading, Jeff Wilson LaJeunesse 2018 Marquette University

Dynamic Behavior Of Granular Earth Materials Subjected To Pressure-Shear Loading, Jeff Wilson Lajeunesse

Dissertations (2009 -)

The dynamic response of granular earth materials such as sand has been of interest for many years. Multiple previous works have explored the shock response of sand in various grain shapes, sizes, and moisture contents, but the response during rapid combined loading has been relatively unexplored. The current study contributes to that lack of data by performing pressure-shear experiments on Oklahoma #1 silica sand, with quasi-smooth grains of 63 - 120 micron diameter and 99.8 wt.% Si02 composition. In these experiments, an oblique flyer plate impacts an equally inclined target, imparting a longitudinal (pressure) and transverse (shear) wave into a ...


Adaptive Observers For Structural Health Monitoring Of High-Rate, Time-Varying Dynamic Systems, B. S. Joyce, J. Hong, J. C. Dodson, J. C. Wolfson, Simon Laflamme 2018 University of Dayton Research Institute

Adaptive Observers For Structural Health Monitoring Of High-Rate, Time-Varying Dynamic Systems, B. S. Joyce, J. Hong, J. C. Dodson, J. C. Wolfson, Simon Laflamme

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

Safe and reliable operation of hypersonic aircraft, space structures, advanced weapon systems, and other high-rate dynamic systems depends on advances in state estimators and damage detection algorithms. High-rate dynamic systems have rapidly changing input forces, rate-dependent and time-varying structural parameters, and uncertainties in material and structural properties. While current structural health monitoring (SHM) techniques can assess damage on the order of seconds to minutes, complex high-rate structures require SHM methods that detect, locate, and quantify damage or changes in the structure’s configuration on the microsecond timescale.

This paper discusses the importance of microsecond structural health monitoring (μSHM) and some ...


A Dynamical System Approach For Resource-Constrained Mobile Robotics, Tauhidul Alam 2018 Florida International University

A Dynamical System Approach For Resource-Constrained Mobile Robotics, Tauhidul Alam

FIU Electronic Theses and Dissertations

The revolution of autonomous vehicles has led to the development of robots with abundant sensors, actuators with many degrees of freedom, high-performance computing capabilities, and high-speed communication devices. These robots use a large volume of information from sensors to solve diverse problems. However, this usually leads to a significant modeling burden as well as excessive cost and computational requirements. Furthermore, in some scenarios, sophisticated sensors may not work precisely, the real-time processing power of a robot may be inadequate, the communication among robots may be impeded by natural or adversarial conditions, or the actuation control in a robot may be ...


Variable Input Observer For State Estimation Of High-Rate Dynamics, Jonathan Hong, Liang Cao, Simon Laflamme, Jacob Dodson 2018 Iowa State University

Variable Input Observer For State Estimation Of High-Rate Dynamics, Jonathan Hong, Liang Cao, Simon Laflamme, Jacob Dodson

Simon Laflamme

High-rate systems operating in the 10 μs to 10 ms timescale are likely to experience damaging effects due to rapid environmental changes (e.g., turbulence, ballistic impact). Some of these systems could benefit from real-time state estimation to enable their full potential. Examples of such systems include blast mitigation strategies, automotive airbag technologies, and hypersonic vehicles. Particular challenges in high-rate state estimation include: 1) complex time varying nonlinearities of system (e.g. noise, uncertainty, and disturbance); 2) rapid environmental changes; 3) requirement of high convergence rate. Here, we propose using a Variable Input Observer (VIO) concept to vary the input ...


Robust Variable Input Observer For Structural Health Monitoring Of Systems Experiencing Harsh Extreme Environments, Jonathan Hong, Liang Cao, Simon Laflamme, Jacob Dodson 2018 Iowa State University

Robust Variable Input Observer For Structural Health Monitoring Of Systems Experiencing Harsh Extreme Environments, Jonathan Hong, Liang Cao, Simon Laflamme, Jacob Dodson

Simon Laflamme

Systems experiencing events in the order of 10μs-10ms timescales, for instance highrate dynamics or harsh extreme environments, may encounter rapid damaging effects. If the structural health of such systems could be accurately estimated in a timely manner, preventative measures could be employed to minimize adverse effects. Previously, a Variable Input Observer (VIO) coupled with a neuro-observer was proposed by the authors as a potential solution in monitoring their structural health. The objective of the VIO is to provide state estimation based on an optimal input space allowed to vary as a function of time. The VIO incorporates the use of ...


Microsecond State Monitoring Of Nonlinear Time-Varying Dynamic Systems, Jacob Dodson, Bryan Joyce, Simon Laflamme, Janet Wolfson 2018 Air Force Research Laboratory

Microsecond State Monitoring Of Nonlinear Time-Varying Dynamic Systems, Jacob Dodson, Bryan Joyce, Simon Laflamme, Janet Wolfson

Simon Laflamme

Reliable operation of next generation high-speed complex structures (e.g. hypersonic air vehicles, space structures, and weapons) relies on the development of microsecond structural health monitoring (μSHM) systems. High amplitude impacts may damage or alter the structure, and therefore change the underlying system configuration and the dynamic response of these systems. While state-of-the-art structural health monitoring (SHM) systems can measure structures which change on the order of seconds to minutes, there are no real-time methods for detection and characterization of damage in the microsecond timescales.

This paper presents preliminary analysis addressing the need for microsecond detection of state and parameter ...


Adaptive Structural Control Using Dynamic Hyperspace, Simon Laflamme 2018 Iowa State University

Adaptive Structural Control Using Dynamic Hyperspace, Simon Laflamme

Simon Laflamme

The design of closed-loop structural control systems necessitates a certain level of robustness to cope with system uncertainties. Neurocontrollers, a type of adaptive control system, have been proposed to cope with those uncertainties. However, the performance of neural networks can be substantially influenced by the choice of the input space, or the hyperspace in which the representation lies. For instance, input selection may influence computation time, adaptation speed, effects of the curse of dimensionality, understanding of the representation, and model complexity. Input space selection is often overlooked in literature, and inputs are traditionally determined offline for an optimized performance of ...


Characterization Of A Novel Variable Friction Connection For Semi-Active Cladding System, Yongqiang Gong, Liang Cao, Simon Laflamme, Spencer Quiel, James Ricles, Douglas Taylor 2018 Iowa State University

Characterization Of A Novel Variable Friction Connection For Semi-Active Cladding System, Yongqiang Gong, Liang Cao, Simon Laflamme, Spencer Quiel, James Ricles, Douglas Taylor

Civil, Construction and Environmental Engineering Publications

Cladding systems are conventionally designed to serve architectural purposes and protect occupants from the environment. Some research has been conducted in altering the cladding system in order to provide additional protection against natural and man-made hazards. The vast majority of these solutions are passive energy dissipators, applicable to the mitigation of single types of hazards. In this paper, we propose a novel semiactive variable friction device that could act as a connector linking a cladding panel to the structural system. Because of its semi-active capabilities, the device, here termed variable friction cladding connection (VFCC), could be utilized to mitigate different ...


Optimization Of Microfluidic Particle Separator Geometry Using Computational Fluid Dynamics, Joseph Petersen 2018 South Dakota State University

Optimization Of Microfluidic Particle Separator Geometry Using Computational Fluid Dynamics, Joseph Petersen

Electronic Theses and Dissertations

Computational fluid dynamics software was used to simulate the motion of circulating tumor cells in a variety of microfluidic cell isolation devices. Design of several novel microfluidic cell isolation devices was aided by viewing streamlines of fluid in devices in simulation. Devices that performed best in simulation used 5-micrometer wide guiding channels to guide cells to the capture location in the device. While these devices performed better than other devices in simulation and captured all particles regardless of position along inlet, experimental results differ from simulation.


Simulation Of Gas Dynamic Cold Spray Process, Sai Rajkumar Vadla 2018 South Dakota State University

Simulation Of Gas Dynamic Cold Spray Process, Sai Rajkumar Vadla

Electronic Theses and Dissertations

The utilization of computational fluid dynamics (CFD) as a study tool in the aerodynamics and turbomachinery industry reinforces efficiency in the design of aircraft or for understanding the flow through pipes. CFD offer tools to model different geometries and perform a more extensive study of the flow phenomena. This gives the opportunity to model a variety of geometries and analyze their behavior under different operating conditions. A similar approach can be applied to coating technologies. Coating technologies play an essential role in the manufacturing industry. Their ability to form layers of specific materials onto engineering components to enhance mechanical and ...


High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti 2018 University of Massachusetts Amherst

High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti

Masters Theses

Cold spray is a unique additive manufacturing process, where a large number of ductile metal micro particles are deposited to create new surface coatings or free-standing structures. Metallic particles are accelerated through a gas stream, reaching velocities of over 1 km/s. Accelerated particles experience a high-strain-rate microscopic ballistic collisions against a target substrate. Large amounts of kinetic energy results in extreme plastic deformation of the particles and substrate. Though the cold spray process has been in use for decades, the extreme material science behind the deformation of particles has not been well understood due to experimental difficulties arising from ...


Study Of Input Space For State Estimation Of High-Rate Dynamics, Jonathan Hong, Simon Laflamme, Jacob Dodson 2018 Iowa State University

Study Of Input Space For State Estimation Of High-Rate Dynamics, Jonathan Hong, Simon Laflamme, Jacob Dodson

Civil, Construction and Environmental Engineering Publications

High-rate dynamic systems are defined as systems being exposed to highly dynamic environments that comprise high-rate and high-amplitude events. Examples of such systems include civil structures exposed to blast, space shuttles prone to debris strikes, and aerial vehicles experiencing in-flight changes. The high-rate dynamic characteristics of these systems provides several possibilities for state estimators to improve performance, including a high potential to reduce injuries and save lives. In this paper, opportunities and challenges that are specific to state estimation of highrate dynamic systems are presented and discussed. It is argued that a possible path to design of state estimators for ...


Thermodynamics Of Coherent Structures Near Phase Transitions, Julia M. Meyer, Ivan Christov 2017 Purdue University

Thermodynamics Of Coherent Structures Near Phase Transitions, Julia M. Meyer, Ivan Christov

The Summer Undergraduate Research Fellowship (SURF) Symposium

Phase transitions within large-scale systems may be modeled by nonlinear stochastic partial differential equations in which system dynamics are captured by appropriate potentials. Coherent structures in these systems evolve randomly through time; thus, statistical behavior of these fields is of greater interest than particular system realizations. The ability to simulate and predict phase transition behavior has many applications, from material behaviors (e.g., crystallographic phase transformations and coherent movement of granular materials) to traffic congestion. Past research focused on deriving solutions to the system probability density function (PDF), which is the ground-state wave function squared. Until recently, the extent to ...


Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian 2017 University of Nebraska - Lincoln

Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

A four cable-driven parallel manipulator (4CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized maize field. This thesis presents the design, controls, and testing of two sub-systems in a 4CDPM: a Center of Mass Balance System (CMBS) and a Drop-Down System (DDS).

One of the factors that influences stability is the center of mass (COM) position of the end effector. An offset in COM can cause a pendulum effect or an undesired tilt angle. A center of mass balancing system is presented in this thesis to minimize the ...


Angle Of Attack Determination Using Inertial Navigation System Data From Flight Tests, Jack Kevin Ly 2017 University of Tennessee, Knoxville

Angle Of Attack Determination Using Inertial Navigation System Data From Flight Tests, Jack Kevin Ly

Masters Theses

Engineers and pilots rely on mechanical flow angle vanes on air data probes to determine the angle of attack of the aircraft in flight. These probes, however, are costly, come with inherent measurement errors, affect the flight characteristics of the aircraft, and are potentially dangerous in envelope expansion flights. Advances in the accuracy, usability, and affordability of inertial navigation systems allow for angle of attack to be determined accurately without direct measurement of the airflow around the aircraft. Utilizing an algorithm developed from aircraft equations of motion, a post-flight data review is completed as the first step in proving the ...


Digital Commons powered by bepress