Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

3,033 Full-Text Articles 4,391 Authors 952,013 Downloads 101 Institutions

All Articles in Engineering Science and Materials

Faceted Search

3,033 full-text articles. Page 6 of 95.

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. 2019 Linfield College

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Parameters That Influence The Performance Of Dispersion Barrier Coatings, Randy Raditya 2019 University of Maine

Parameters That Influence The Performance Of Dispersion Barrier Coatings, Randy Raditya

Electronic Theses and Dissertations

Barrier coating layers are important in many paper grades used in food packaging and have the potential to help reduce our use of plastics in some situations. Barrier layers to produce water proof packaging such as milk or juice cartons or coffee cups are common. Water based dispersion barrier coatings have the potential to be a low-cost alternative to extrusion coated layers. Water borne coatings are reported to be easy to recycle and break down in the environment. However, barrier properties are often less than what is desired and expected for these water borne coatings. The reason for this poor ...


The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee DeBerardinis 2019 University of Nevada, Las Vegas

The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee Deberardinis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Introduction: The mechanical characteristics of the plantar tissues during walking is not well understood as most of the current research focuses on testing specific plantar regions in cadavers or while the feet of the participants are raised. In this work, it is hypothesized that a viscoelastic geometric ellipsoid model used to assess multiple structures of the foot would be accurate and robust. This model would be participant-specific and applicable to the entire stance phase of gait.

Methods: The proposed viscoelastic ellipsoid model would represent several key anatomical areas: Heel, Posterior Midfoot, Anterior Midfoot, Metatarsals 1-2, Metatarsals 3-5, Toe 1, Toe ...


Cesium Platinum Iodide Perovskite Synthesis, Development And Application In Photovoltaic Devices, Dakota Schwartz 2019 University of Nevada, Las Vegas

Cesium Platinum Iodide Perovskite Synthesis, Development And Application In Photovoltaic Devices, Dakota Schwartz

UNLV Theses, Dissertations, Professional Papers, and Capstones

Third generation photovoltaics, including perovskites, are essential to improving solar technology for widespread future use. Perovskite solar cells have surpassed 23.7% power conversion efficiency, comparable to traditional silicon photovoltaic panels. However, these perovskites are fabricated using lead-based compounds, posing toxicity issues. Furthermore, existing perovskites have limited thermal and moisture stability in ambient environments. In order to address toxicity and stability concerns, as well as to maximize photon absorption in solar cells through bandgap optimization, this effort focuses on the development of novel leadfree perovskite materials. A cesium platinum iodide composition is selected as a model system due to the ...


Influence Of Metal Additives On Microstructure And Properties Of Amorphous Metal–Sioc Composites, Kaisheng Ming, Qing Su, Chao Gu, Dongyue Xie, Yongqiang Wang, Michael Nastasi, Jian Wang 2019 University of Nebraska-Lincoln

Influence Of Metal Additives On Microstructure And Properties Of Amorphous Metal–Sioc Composites, Kaisheng Ming, Qing Su, Chao Gu, Dongyue Xie, Yongqiang Wang, Michael Nastasi, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Strong, ductile, and irradiation-tolerant structural materials are in urgent demand for improving the safety and efficiency of advanced nuclear reactors. Amorphous ceramics could be promising candidates for high irradiation tolerance due to thermal stability and lack of crystal defects. However, they are very brittle due to plastic flow instability. Here, we realized enhanced plasticity of amorphous ceramics through compositional and microstructural engineering. Two metal–amorphous ceramic composites, Fe-SiOC and Cu-SiOC, were fabricated by magnetron sputtering. Iron atoms are preferred to form uniformly distributed nano-sized Fe-rich amorphous clusters, while copper atoms grow non-uniformly distributed nano-crystalline Cu particles. The Fe-SiOC composite exhibits ...


Mechanical And Tribological Behaviour Of Treated And Untreated Moringa Oleifera Pods Fiber Reinforced Epoxy Polymer Composite For Packaging Applications, prakash sampath, Senthil Kumar V.S Dr 2019 Anna University

Mechanical And Tribological Behaviour Of Treated And Untreated Moringa Oleifera Pods Fiber Reinforced Epoxy Polymer Composite For Packaging Applications, Prakash Sampath, Senthil Kumar V.S Dr

Journal of Applied Packaging Research

Researchers now focus on the use of natural fiber polymer composites materials for packing applications. This attention is due to their low cost and renewable characteristics. Fabrication of composites with the use of renewable resources has many benefits of alternating from an appropriate management and reduction in industrial wastages, ecofriendly behaviour to cost effectiveness. The artificial fibers in packing industries can be replaced by natural fibers in the areas where stiffness and high strength are not the primary requirement. In the last decade the use of Natural fibers in the place of artificial fibers for reinforcements in epoxy resin matrix ...


Biomechanical Foot Guidance Linkage, Carl Nelson, Cale J. Stolle, Judith M. Burnfield 2019 Lincoln, NE

Biomechanical Foot Guidance Linkage, Carl Nelson, Cale J. Stolle, Judith M. Burnfield

Mechanical & Materials Engineering Faculty Publications

A gait replication apparatus can include a scalable mechanical mechanism configured to replicate different gaits . The scalable mechanical mechanism can include , for example , a four - bar linkage , a pantograph , a cam / Scotch - yoke mechanism , and so forth . In some embodiments , the mechanical mechanism includes a beam rotating about an axis passing proximate to its center , with a foot pedal slidably coupled with the beam , and a timing chain / belt or cable pulley - pair coupled with the foot pedal and looped about the beam . A method can include decomposing a foot path defined by Cartesian coordinates into polar coordinates , and providing ...


A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky-Golay Filter For Ecg Denoising, Hui Huang, Shiyan Hu, Ye Sun 2019 Michigan Technological University

A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky-Golay Filter For Ecg Denoising, Hui Huang, Shiyan Hu, Ye Sun

Department of Mechanical Engineering-Engineering Mechanics Publications

Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often ...


A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky⁻Golay Filter For Ecg Denoising., Hui Huang, Shiyan Hu, Ye Sun 2019 Michigan Technological University

A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky⁻Golay Filter For Ecg Denoising., Hui Huang, Shiyan Hu, Ye Sun

Michigan Tech Publications

Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often ...


Investigation Of Multiple Torch Paw-Based Additive Manufacturing, Nathan Huft 2019 Montana Tech

Investigation Of Multiple Torch Paw-Based Additive Manufacturing, Nathan Huft

Graduate Theses & Non-Theses

PAW Print 3D (PP3D), a wire and arc additive manufacturing (AM) system was developed. PP3D comprises three plasma arc welding torches arranged radially around a central wire feed. Using three torches was hypothesized to eliminate sensitivity to travel direction. Two deposition modes were developed – continuous, which deposited continuous beads, and dabber, which deposited discreet “dabs” of material. Dabber was hypothesized to provide favorable solidification conditions that would refine the as-deposited grain structure. Three sets of process parameters for each deposition mode were developed. Ineffective workpiece melting was observed and investigated during process development. Using COMSOL Multiphysics software and experimental observations ...


Mechanism For Disodium Carboxymethyl Trithiocarbonate (Orfom® D8) Depression In Chalcopyrite-Molybdenite Flotation Systems, Simon Timbillah 2019 Montana Tech

Mechanism For Disodium Carboxymethyl Trithiocarbonate (Orfom® D8) Depression In Chalcopyrite-Molybdenite Flotation Systems, Simon Timbillah

Graduate Theses & Non-Theses

The chalcopyrite-molybdenite (Cu-Mo) flotation industry is increasingly turning to organic depressants as suitable replacements for inorganic reagents such as NaHS due to environmental and safety concerns as well as high consumption rates of the inorganic reagents. An opportunity arises for improving, designing and synthesizing new alternative reagents. Disodium Carboxymethyl Trithiocarbonate (Orfom® D8) depressant is an organic depressant with a carboxylate group on one end and a trithiocarbonate group at the other end. Fundamental results are shown regarding the interaction of the Orfom® D8 depressant in the bulk flotation of a Cu-Mo concentrate from an operating North American mine. Cyclic Voltammetry ...


A Novel Correlation Model For Horizontal Axis Wind Turbines Operating At High-Interference Flow Regimes, Anurag Rajan, Fernando L. Ponta 2019 Michigan Technological University

A Novel Correlation Model For Horizontal Axis Wind Turbines Operating At High-Interference Flow Regimes, Anurag Rajan, Fernando L. Ponta

Department of Mechanical Engineering-Engineering Mechanics Publications

Driven by economics-of-scale factors, wind-turbine rotor sizes have increased formidably in recent years. Larger rotors with lighter blades of increased flexibility will experiment substantially higher levels of deformation. Future turbines will also incorporate advanced control strategies to widen the range of wind velocities over which energy is captured. These factors will extend turbine operational regimes, including flow states with high interference factors. In this paper we derive a new empirical relation to both improve and extend the range of Blade Element Momentum (BEM) models, when applied to high interference-factor regimes. In most BEM models, these flow regimes are modeled using ...


Advances In Design Methodology In Swelling Shale Rock In Southern Ontario, Thomas R.A. Lardner 2019 The University of Western Ontario

Advances In Design Methodology In Swelling Shale Rock In Southern Ontario, Thomas R.A. Lardner

Electronic Thesis and Dissertation Repository

As infrastructure requirements increase in southern Ontario, excavations within swelling rock formations will become more frequent and larger. The objective of this study is to advance design capability for structures in swelling rock through three aspects: i) developing a practical swelling model for design engineers, ii) investigate two crushable/compressible materials for the mitigation of swelling rock effects, and iii) observe and analyze the behaviour of swelling rock to current excavation techniques.

A swelling rock constitutive model has been developed. The swelling parameters include the horizontal and vertical free swell potential, threshold stress, and critical stress as well as a ...


Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt 2019 Air Force Institute of Technology

Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt

Theses and Dissertations

Wind tunnels play an indispensable role in the process of aircraft design, providing a test bed to produce valuable, accurate data that can be extrapolated to actual flight conditions. Historically, time-averaged data has made up the bulk of wind tunnel research, but modern flight design necessitates the use of dynamic wind tunnel testing to provide time-accurate data for high frequency motion. This research explores the use of a 6 degree of freedom (DOF) motion test apparatus (MTA) in the form of a robotic arm to allow models inside a subsonic wind tunnel to track prescribed trajectories to obtain time-accurate force ...


Influence Of Leading Edge Oscillatory Blowing On Time-Accurate Dynamic Store Separation, Ryan G. Saunders 2019 Air Force Institute of Technology

Influence Of Leading Edge Oscillatory Blowing On Time-Accurate Dynamic Store Separation, Ryan G. Saunders

Theses and Dissertations

The primary objective of this research is to support the static and dynamic characterization and the time-accurate dynamic load data acquisition of store separation from a cavity with leading edge oscillatory blowing. Developing an understanding of, and potentially controlling, pitch bifurcation of a store release is a motivation for this research. The apparatus and data acquisition system was used in a two-part experiment to collect both static and dynamic testing data in the AFIT low speed wind tunnel in speeds of 60, 100, and 120 mph, from Reynolds numbers varying from 5.5x104 to 4.6x105, depending on ...


Ballistic Evaluation Of Carbon Nanotube Sheet Material In Multifunctional Applications, Casey M. Keilbarth 2019 Air Force Institute of Technology

Ballistic Evaluation Of Carbon Nanotube Sheet Material In Multifunctional Applications, Casey M. Keilbarth

Theses and Dissertations

Significant development of carbon nanotubes has occurred since they were first studied in the 1990's. Attempts to capture the phenomenal molecular properties in practical applications are gaining ground as new methods of producing CNTs have been developed. This thesis sought to determine if the addition of commercially produced CNT sheets to thin carbon fiber panels improved the ballistic properties of the panel. The difference between 0 and 4 CNT sheets was studied. The hypothesis was that inte- grating CNT sheets into the laminate would increase the projectile energy absorbed by the panel and reduce the damage to the panel ...


Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung 2019 Air Force Institute of Technology

Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung

Theses and Dissertations

A recent research effort, sponsored by the Air Force Office of Scientific Research, numerically investigated the unsteady aerodynamic flow field around an oscillating, straked, delta wing. The study was centered on determining the importance of the unsteady aerodynamic forces acting as a driver for a nonlinear motion known as limit cycle oscillations. The current effort focused on creating a computational model to compare to the results of previous tests and modeling efforts and discover new information regarding the onset of LCO. The computational model was constructed using the Cartesian overset capabilities of the CREATE-AV™ fixed wing fluid dynamics solver Kestrel ...


Computational Aerothermodynamic Analysis Of Satellite Trans-Atmospheric Skip Entry Survivability, John J. Runco 2019 Air Force Institute of Technology

Computational Aerothermodynamic Analysis Of Satellite Trans-Atmospheric Skip Entry Survivability, John J. Runco

Theses and Dissertations

Computational aerothermodynamic analysis is presented for a spacecraft in low Earth orbit performing an atmospheric skip entry maneuver. Typically, atmospheric reentry is a terminal operation signaling mission end-of-life and, in some instances, executed for spacecraft disposal. A variation on reentry – skip entry – is an aeroassisted trans-atmospheric maneuver in which a spacecraft utilizes the effects of aerodynamic drag in order to reduce energy prior to a terminal entry, pinpoint a targeted entry, or change orbital elements such as inclination. Spacecraft performing a skip entry enable new modes of maneuver to enhance operations in nominal or possibly contested mission environments. The present ...


Manufacture Of Fused Deposition Modeling Joints Using Ultem 9085, Zane A. Willburn 2019 Air Force Institute of Technology

Manufacture Of Fused Deposition Modeling Joints Using Ultem 9085, Zane A. Willburn

Theses and Dissertations

The manufacture of joints between a base structure and a structure manufactured via Fused Deposition Modeling (FDM) will be investigated. ULTEM 9085, a high temperature plastic with potential aerospace applications, will be the material used. The specific application this research is focused on is a robotic and mobile FDM printer capable of building structures onto other structures in space. A joint will be formed by fusing the base layer of the printed structure and the top of the base structure together. Tensile testing will be performed to determine the strength of the bond between parts. Tensile specimens will be manufactured ...


Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai 2019 Purdue University Northwest

Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai

ASEE IL-IN Section Conference

Application of Computational Tools to Spaghetti-Based Truss Design

Statics and Strength of Materials are two foundational courses for Mechanical/Civil Engineering. In order to assist students in better understanding and applying concepts to a meaningful design task, SolidWorks and theoretical calculation were used for a spaghetti-bridge design contest with the constraints of given maximum weight and allowable support-material weight. As the first step of this iterative designing process, both extrude feature and structural member were introduced to model planar bridge trusses. Then SolidWorks’ Statics module was used to run FEA analysis of the structural performance in efforts to optimize the ...


Digital Commons powered by bepress