Noncontact Liquid Crystalline Broadband Optoacoustic Sensors [U.S. Patent Us11366054b2],
2022
Air Force Institute of Technology
Noncontact Liquid Crystalline Broadband Optoacoustic Sensors [U.S. Patent Us11366054b2], Hengky Chandrahalim, Michael T. Dela Cruz
Faculty Publications
An optoacoustic sensor includes a liquid crystal (LC) cell formed between top and bottom plates of transparent material. A transverse grating formed across the LC cell that forms an optical transmission bandgap. A CL is aligned to form a spring-like, tunable Bragg grating that is naturally responsive to external agitations providing a spectral transition regime, or edge, in the optical transmission bandgap of the transverse grating that respond to broadband acoustic waves. The optoacoustic sensor includes a narrowband light source that is oriented to transmit light through the top plate, the LC cell, and the bottom plate. The optoacoustic sensor …
Missile Materials,
2022
Aerospace Engineering, Sandip University, Maharashtra, INDIA
Missile Materials, Pranjali Pandurang Sankpal Engineer-Graduate, Varun Vourganti Dr.
Graduate Research in Engineering and Technology (GRET)
The development of missile materials is the key to indigenous materials and their components. The selection of materials includes some the properties such as high strength to weight ratio, easy fabrication, good corrosion resistance, reliable quality, and high fracture toughness. The materials used for the airframe and propulsion system are alloys of aluminum, titanium, magnesium, and maraging steel. Non-metallic materials are also used such as carbon-carbon composites and polymer materials. High purity materials like phosphorous, and silicon are also important for material advancements. The paper outlines the needs and challenges of research and its solutions.
Gross Positioning Device And
Related Systems And Methods,
2022
University of Nebraska - Lincoln
Gross Positioning Device And Related Systems And Methods, Mark A. Reichenbach, Shane M. Farritor
Mechanical & Materials Engineering Faculty Publications
Disclosed herein are gross positioning systems for use with robotic surgical devices to provide gross positioning of the robotic surgical devices. The gross positioning systems have a base, a first arm link operably coupled to the base, a second arm link operably coupled to the first arm link, a third arm link operably coupled to the second arm link, and a slidable coupling component slidably coupled to the third arm link.
Bbt Side Mold Assy,
2022
East Tennessee State University
Bbt Side Mold Assy, Bill Hemphill
STEM Guitar Project’s BBT Acoustic Kit
This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds, speed, multi-pass …
Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines,
2022
California Polytechnic State University, San Luis Obispo
Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter
Materials Engineering
Polymer concrete is a composite material used to replace cast iron and steel in wafer grinding machines for vibration damping. During the grinding and lapping processes of manufacturing silicon wafers, excessive vibrations may cause subsurface damage which requires additional polishing and reduces yield. Nine compositions containing various levels of granulated rubber and glass fibers were manufactured. CRM WRF-10 granulated rubber was examined at 0%, 5%, and 10% and Corning Cem-Fil glass fibers were added at 0%, 0.5%, and 1% by weight. Smooth-On EpoxAcast 690 epoxy resin was held constant at 16% for each composition. Crushed granite aggregate from Martin Marietta, …
Dynamic Response Of Elastic Two-Story Steel Moment Frame Scaled Structure Equipped With Viscous Dampers,
2022
California Polytechnic State University, San Luis Obispo
Dynamic Response Of Elastic Two-Story Steel Moment Frame Scaled Structure Equipped With Viscous Dampers, Garrett L. Barker, Alexander L. Poirier
Architectural Engineering
The authors of this report are Architectural Engineering undergraduate students at California Polytechnic State University, San Luis Obispo. Damping is a complex, experimentally derived value that is affected by many structural properties and has a profound effect on the dynamic response of structures. Deducing the inherent damping of a steel moment frame and affecting the damping ratio with viscous dampers are two topics explored in this paper. Dampers are commonly implemented in resilient structures that perform better in a design basis earthquake, reducing the seismic cost and downtime. Undergraduate coursework does not delve into the factors that affect damping and …
Me-Em Enewsbrief, June 2022,
2022
Michigan Technological University
Me-Em Enewsbrief, June 2022, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University
Department of Mechanical Engineering-Engineering Mechanics eNewsBrief
No abstract provided.
In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes,
2022
California Polytechnic State University, San Luis Obispo
In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes, Ali Harake
Master's Theses
The world of additive manufacturing revolves around speed and repeatability. Inherently, the process of 3D printing is plagued with variability that fluctuates with every material and parameter modification. Without proper qualification standards, processes can never become stable enough to produce parts that may be used in aerospace, medical, and construction industries. These industries rely on high quality metrics in order to protect the lives of those who may benefit from them. To establish trust in a process, all points of variation must be controlled and accounted for every part produced. In instances where even the best process controls are enacted, …
Investigation Of Topological Phonons In Acoustic Metamaterials,
2022
New Jersey Institute of Technology
Investigation Of Topological Phonons In Acoustic Metamaterials, Wenting Cheng
Dissertations
Topological acoustics is a recent and intense area of research. It merges the knowledge of mathematical topology, condensed matter physics, and acoustics. At the same time, it has been pointed out that quasiperiodicity can greatly enhance the periodic table of topological systems. Because quasiperiodic patterns have an intrinsic global degree of freedom, which exists in the topological space called the hull of a pattern, where the shape traced in this topological space is called the phason. The hull augments the physical space, which opens a door to the physics of the integer quantum Hall effect (IQHE) in arbitrary dimensions. In …
Monolithic Integration Of Hybrid
Perovskite Single Crystals With
Silicon For Highly Sensitive X - Ray
Detectors,
2022
Lincoln , NE
Monolithic Integration Of Hybrid Perovskite Single Crystals With Silicon For Highly Sensitive X - Ray Detectors, Jinsong Huang, Wei Wei
Mechanical & Materials Engineering Faculty Publications
Perovskite single crystal X - ray radiation detector devices including an X - ray wavelength - responsive active layer including an organolead trihalide perovskite single crystal, a substrate layer comprising an oxide, and a binding layer disposed between the active layer and the substrate layer. The binding layer including a binding molecule having a first functional group that bonds to the organolead trihalide perovskite single crystal and a second functional bonds with the oxide. Inclusion of the binding layer advantageously reduces device noise while retaining signal intensity.
Passivation Of Defects In
Perovskite Materials For Improved
Solar Cell Efficiency And Stability,
2022
Lincoln , NE
Passivation Of Defects In Perovskite Materials For Improved Solar Cell Efficiency And Stability, Jinsong Huang, Xiaopeng Zheng
Mechanical & Materials Engineering Faculty Publications
Semiconductor devices , and methods of forming the same , include a cathode layer , an anode layer , and an active layer disposed between the cathode layer and the anode layer , wherein the active layer includes a perovskite layer . A passivation layer is disposed directly on a surface of the active layer between the cathode layer and the active layer , the passivation layer including a layer of material that passivates both cationic and anionic defects in the surface of the active layer .
Challenges And Signal Processing Of High Strain Rate Mechanical Testing,
2022
Mississippi State University
Challenges And Signal Processing Of High Strain Rate Mechanical Testing, Barae Lamdini
Theses and Dissertations
Dynamic testing provides valuable insight into the behavior of materials undergoing fast deformation. During Split-Hopkinson Pressure Bar testing, stress waves are measured using strain gauges as voltage variations that are usually very small. Therefore, an amplifier is required to amplify the data and analyze it. One of the few available amplifiers designed for this purpose is provided by Vishay Micro-Measurements which limits the user’s options when it comes to research or industry. Among the challenges of implementing the Hopkinson technology in the industry are the size and cost of the amplifier. In this work, we propose a novel design of …
Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip [U.S. Patent Us11326970b2],
2022
Air Force Institute of Technology
Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip [U.S. Patent Us11326970b2], Jeremiah C. Williams, Hengky Chandrahalim
Faculty Publications
A passive microscopic Fabry-Pérot Interferometer (FPI) pressure sensor includes an optical fiber and a three-dimensional microscopic optical enclosure. The three-dimensional microscopic optical enclosure includes tubular side walls having lateral pleated corrugations and attached to a cleaved tip of the optical fiber to receive a light signal. An optically reflecting end wall is distally engaged to the tubular side walls to enclose a trapped quantity of gas that longitudinally positions the optically reflecting end wall in relation to ambient air pressure, changing a distance traveled by a light signal reflected back through the optical fiber.
Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics,
2022
University of Maine
Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock
Electronic Theses and Dissertations
This work focuses on evaluating different modeling approaches and model parameters for thermoplastic AM, with the goal of informing more efficient and effective modeling approaches. First, different modeling approaches were tested and compared to experiments. From this it was found that all three of the modeling approaches provide comparable results and provide similar results to experiments. Then one of the modeling approaches was tested on large scale geometries, and it was found that the model results matched experiments closely. Then the effect of different material properties was evaluated, this was done by performing a fractional factorial design of experiments where …
Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors [Us Patent Us11320596b2],
2022
Air Force Institute of Technology
Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors [Us Patent Us11320596b2], Jeremiah C. Williams, Hengky Chandrahalim
Faculty Publications
A passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of the optical fighter using a two-photon polymerization process on a photosensitive polymer by a three-dimensional micromachining device. The three-dimensional microscopic optical structure having a hinged optical layer pivotally connected to a distal portion of a suspended structure. A reflective layer is deposited on a mirror surface of the hinged optical layer while in an open position. The hinged optical layer is subsequently positioned in the closed position to align the mirror surface to at least partially reflect a light signal back …
3d Printing Of Piezoelectric Materials And Devices,
2022
University of Southern Maine
3d Printing Of Piezoelectric Materials And Devices, Dominic Polletta, Zack Myrtle
Thinking Matters Symposium
The design goal of the project is to use a stock 3D printer to 3D print materials with piezoelectric properties by adding Barium Titanate nanoparticles to the UV resin. The result of the printed material will be a device that will produce a charge when subjected to vibrations or stress. These printed devices can be used as microphones and other vibration sensors in a variety of applications. This process will be achieved by modifying the 3D printer by changing the film in the resin vat of the printer with a conductive film. This will allow for applied voltage to create …
Pinless Friction Stir Spot Welding Of Ti-6al-4v Alloy For Aerospace Application,
2022
University of Tennessee, Knoxville
Pinless Friction Stir Spot Welding Of Ti-6al-4v Alloy For Aerospace Application, Hyojin Park
Doctoral Dissertations
Friction Stir Spot Welding (FSSW) is a newly developed solid-state joining technique with considerable merits over conventional spot-welding techniques, such as relatively simple procedure and excellent welding properties. It has been successfully implemented for the joining of light-weight structural materials, such as Al- and Mg-based alloys, with superior weldability and reduction of the manufacturing costs and energy consumption. In addition, by removing the pin from the friction stir spot welding tool, the pinless FSSW (p-FSSW) has minimized the formation of welding defects such as keyhole and hooking, which resulted in further improvements in the mechanical properties of weldments. However, the …
Measuring The Electrical Properties Of 3d Printed Plastics In The W-Band,
2022
University of Arkansas, Fayetteville
Measuring The Electrical Properties Of 3d Printed Plastics In The W-Band, Noah Gregory
Electrical Engineering Undergraduate Honors Theses
3D printers are a method of additive manufacturing that consists of layering material to produce a 3D structure. There are many types of 3D printers as well as many types of materials that are capable of being printed with. The most cost-effective and well documented method of 3D printing is called Fused Deposition Modeling (FDM). FDM printers work by feeding a thin strand of plastic filament through a heated extruder nozzle. This plastic is then deposited on a flat, typically heated, surface called a print bed. The part is then built by depositing thin layers of plastic in the shape …
Rational Design Of Composite Nanomaterials For Water Treatment Applications,
2022
The University of Texas at El Paso
Rational Design Of Composite Nanomaterials For Water Treatment Applications, Mariana Marcos-Hernandez
Open Access Theses & Dissertations
Water quantity and quality have been affected in communities all around the world due to population growth, pollution, changes in land use, and climate change. In order to cope with existing and anticipated water demands and shortages, the use of treated or reclaimed water is an ongoing alternative that has helped communities all over the world address this problem. The adaptation of nanotechnology to traditional water and wastewater treatment processes offers new opportunities in technological developments. Unique size-dependent properties such as: high surface to mass ratio, high reactivity, high sorption capacities, fast dissolution, superparamagnetism, among others, provide high-tech efficient materials …
Phonon Thermodynamics Of Bcc Zirconium With Machine Learning,
2022
The University of Texas at El Paso
Phonon Thermodynamics Of Bcc Zirconium With Machine Learning, Vanessa Judith Meraz
Open Access Theses & Dissertations
First principles-based simulations have allowed us to explore emerging phenomena in a variety of systems. Its steadfast practicality has led to an increase in molecular and materials design ranging from drug discovery to planetary formation. However ubiquitous in its field, one of its biggest drawbacks is its computational cost, notably so in molecular dynamics simulations. To counter this setback, there have been many leading efforts in machine learning methods, whether it be in algorithms or network architectures. Our contribution uses an active learning algorithm paired with a tensor field network, e3nn. By steadily feeding new data points to our model, …