Open Access. Powered by Scholars. Published by Universities.®

Non-linear Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

524 Full-Text Articles 521 Authors 164,481 Downloads 64 Institutions

All Articles in Non-linear Dynamics

Faceted Search

524 full-text articles. Page 8 of 20.

Exact Robot Navigation Using Power Diagrams, Omur Arslan, Daniel E. Koditschek 2016 University of Pennsylvania

Exact Robot Navigation Using Power Diagrams, Omur Arslan, Daniel E. Koditschek

Departmental Papers (ESE)

We reconsider the problem of reactive navigation in sphere worlds, i.e., the construction of a vector field over a compact, convex Euclidean subset punctured by Euclidean disks, whose flow brings a Euclidean disk robot from all but a zero measure set of initial conditions to a designated point destination, with the guarantee of no collisions along the way. We use power diagrams, generalized Voronoi diagrams with additive weights, to identify the robot’s collision free convex neighborhood, and to generate the value of our proposed candidate solution vector field at any free configuration via evaluation of an associated convex ...


Computing All Isolated Invariant Sets At A Finite Resolution, Martin Salgado-Flores 2016 College of William and Mary

Computing All Isolated Invariant Sets At A Finite Resolution, Martin Salgado-Flores

Undergraduate Honors Theses

Conley Index theory has inspired the development of rigorous computational methods to study dynamics. These methods construct outer approximations, combinatorial representations of the system, which allow us to represent the system as a combination of two graphs over a common vertex set. Invariant sets are sets of vertices and edges on the resulting digraph. Conley Index theory relies on isolated invariant sets, which are maximal invariant sets that meet an isolation condition, to describe the dynamics of the system. In this work, we present a computationally efficient and rigorous algorithm for computing all isolated invariant sets given an outer approximation ...


Mathematical Modeling Of Quadcopter Dynamics, Qikai Huang (Bruce Wingo) 2016 Rose-Hulman Institute of Technology

Mathematical Modeling Of Quadcopter Dynamics, Qikai Huang (Bruce Wingo)

Rose-Hulman Undergraduate Research Publications

Recently, Google, Amazon and others are attempting to develop delivery drones for commercial use, in particular Amazon Prime Air promising 30 minute delivery. One type of commonly used drone proposed for such purposes is a quadcopter. Quadcopters have been around for some time with original development in the 1920’s. They are popular now because they are mechanically simple and provide a good vehicle for unmanned flight. By controlling the speed of the four propellers, a quadcopter can roll, change pitch, change yaw, and accelerate. This research will focus on the study of classical mechanics theories on rigid body motion ...


On The Flow Of Non-Axisymmetric Perturbations Of Cylinders Via Surface Diffusion, Jeremy LeCrone, Gieri Simonett 2016 University of Richmond

On The Flow Of Non-Axisymmetric Perturbations Of Cylinders Via Surface Diffusion, Jeremy Lecrone, Gieri Simonett

Math and Computer Science Faculty Publications

We study the surface diffusion flow acting on a class of general (non--axisymmetric) perturbations of cylinders Cr in IR3. Using tools from parabolic theory on uniformly regular manifolds, and maximal regularity, we establish existence and uniqueness of solutions to surface diffusion flow starting from (spatially--unbounded) surfaces defined over Cr via scalar height functions which are uniformly bounded away from the central cylindrical axis. Additionally, we show that Cr is normally stable with respect to 2π--axially--periodic perturbations if the radius r>1,and unstable if 0


Study Of Infectious Diseases By Mathematical Models: Predictions And Controls, SM Ashrafur Rahman 2016 The University of Western Ontario

Study Of Infectious Diseases By Mathematical Models: Predictions And Controls, Sm Ashrafur Rahman

Electronic Thesis and Dissertation Repository

The aim of this thesis is to understand the spread, persistence and prevention mechanisms of infectious diseases by mathematical models. Microorganisms that rapidly evolve pose a constant threat to public health. Proper understanding of the transmission machinery of these existing and new pathogens may facilitate devising prevention tools. Prevention tools against transmissions, including vaccines and drugs, are evolving at a similar pace. Efficient implementation of these new tools is a fundamental issue of public health. We primarily focus on this issue and explore some theoretical frameworks.

Pre-exposure prophylaxis (PrEP) is considered one of the promising interventions against HIV infection as ...


Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski 2016 Wroclaw University of Technology

Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski

Wojciech Budzianowski

-


Inżynieria Chemiczna Lab., Wojciech M. Budzianowski 2016 Wroclaw University of Technology

Inżynieria Chemiczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

-


Topological Data Analysis For Systems Of Coupled Oscillators, Alec Dunton 2016 Harvey Mudd College

Topological Data Analysis For Systems Of Coupled Oscillators, Alec Dunton

HMC Senior Theses

Coupled oscillators, such as groups of fireflies or clusters of neurons, are found throughout nature and are frequently modeled in the applied mathematics literature. Earlier work by Kuramoto, Strogatz, and others has led to a deep understanding of the emergent behavior of systems of such oscillators using traditional dynamical systems methods. In this project we outline the application of techniques from topological data analysis to understanding the dynamics of systems of coupled oscillators. This includes the examination of partitions, partial synchronization, and attractors. By looking for clustering in a data space consisting of the phase change of oscillators over a ...


A Study Of The Effect Of Harvesting On A Discrete System With Two Competing Species, Rebecca G. Clark 2016 Virginia Commonwealth University

A Study Of The Effect Of Harvesting On A Discrete System With Two Competing Species, Rebecca G. Clark

Theses and Dissertations

This is a study of the effect of harvesting on a system with two competing species. The system is a Ricker-type model that extends the work done by Luis, Elaydi, and Oliveira to include the effect of harvesting on the system. We look at the uniform bound of the system as well as the isoclines and perform a stability analysis of the equilibrium points. We also look at the effects of harvesting on the stability of the system by looking at the bifurcation of the system with respect to harvesting.


Hamiltonian Formulation For Wave-Current Interactions In Stratified Rotational Flows, Adrian Constantin, Rossen Ivanov, Calin-Iulian Martin 2016 University of Vienna

Hamiltonian Formulation For Wave-Current Interactions In Stratified Rotational Flows, Adrian Constantin, Rossen Ivanov, Calin-Iulian Martin

Articles

We show that the Hamiltonian framework permits an elegant formulation of the nonlinear governing equations for the coupling between internal and surface waves in stratified water flows with piecewise constant vorticity.


Nestt: A Nonconvex Primal-Dual Splitting Method For Distributed And Stochastic Optimization, Davood Hajinezhad, Mingyi Hong, Tuo Zhao, Zhaoran Wang 2016 Iowa State University

Nestt: A Nonconvex Primal-Dual Splitting Method For Distributed And Stochastic Optimization, Davood Hajinezhad, Mingyi Hong, Tuo Zhao, Zhaoran Wang

Industrial and Manufacturing Systems Engineering Conference Proceedings and Posters

We study a stochastic and distributed algorithm for nonconvex problems whose objective consists a sum N/ nonconvex Li/N/ smooth functions, plus a nonsmooth regularizer. The proposed NonconvEx primal-dual SpliTTing (NESTT) algorithm splits the problem into N/ subproblems, and utilizes an augmented Lagrangian based primal-dual scheme to solve it in a distributed and stochastic manner. With a special non-uniform sampling, a version of NESTT achieves e-1 stationary solution using...gradient evaluations, which can be up to O(N)/ times better than the (proximal) gradient descent methods. It also achieves Q-linear convergence rate for nonconvex l1 penalized quadratic problems with polyhedral ...


Models Of Internal Waves In The Presence Of Currents, Alan Compelli, Rossen Ivanov 2016 Technological University Dublin

Models Of Internal Waves In The Presence Of Currents, Alan Compelli, Rossen Ivanov

Conference papers

A fluid system consisting of two domains is examined. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. An internal wave propagating in one direction, driven by gravity, acts as a free common interface between the fluids. Various current profiles are considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are formulated. The presented models provide potential applications to modelling of internal geophysical ...


The Dynamics Of Flat Surface Internal Geophysical Waves With Currents, Alan Compelli, Rossen Ivanov 2016 Technological University Dublin

The Dynamics Of Flat Surface Internal Geophysical Waves With Currents, Alan Compelli, Rossen Ivanov

Articles

A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behavior is examined and compared to that of other known models. The linearised ...


Border-Collision Bifurcations Of Cardiac Calcium Cycling, Jacob Michael Kahle 2015 University of Tennessee - Knoxville

Border-Collision Bifurcations Of Cardiac Calcium Cycling, Jacob Michael Kahle

Masters Theses

In this thesis, we study the nonlinear dynamics of calcium cycling within a cardiac cell. We develop piecewise smooth mapping models to describe intracellular calcium cycling in cardiac myocyte. Then, border-collision bifurcations that arise in these piecewise maps are investigated. These studies are carried out using both one-dimensional and two-dimensional models. Studies in this work lead to interesting insights on the stability of cardiac dynamics, suggesting possible mechanisms for cardiac alternans. Alternans is the precursor of sudden cardiac arrests, a leading cause of death in the United States.


Simulating And Animating The Spatial Dynamics Of Interacting Species Living On A Torus, Boyan Kostadinov 2015 CUNY New York City College of Technology

Simulating And Animating The Spatial Dynamics Of Interacting Species Living On A Torus, Boyan Kostadinov

Publications and Research

The goal of this talk is to present a student research project in computational population biology, which aims at creating a computer simulation and animation of the spatial dynamics of interactions between two kinds of species living on a torus-shaped universe. The habitat for spatial interactions is modeled by a 2D lattice with periodic boundary conditions, which wrap the rectangular grid into a torus. The spatial interactions between the species have two components: 1. Population dynamics modeled by the classical Nicholson-Bailey two-parameter family of models for coupled interactions between species, extended to incorporate space and 2. Two-parameter migration dynamics, modeled ...


Transition Orbits Of Walking Droplets, Joshua Parker 2015 California Polytechnic State University - San Luis Obispo

Transition Orbits Of Walking Droplets, Joshua Parker

Physics

It was recently discovered that millimeter-sized droplets bouncing on the surface of an oscillating bath of the same fluid can couple with the surface waves it produces and begin walking across the fluid bath. These walkers have been shown to behave similarly to quantum particles; a few examples include single-particle diffraction, tunneling, and quantized orbits. Such behavior occurs because the drop and surface waves depend on each other to exist, making this the first and only known macroscopic pilot-wave system. In this paper, the quantized orbits between two identical drops are explored. By sending a perturbation to a pair of ...


Mathematical Notions Of Resilience: The Effects Of Disturbancei In One-Dimensional Nonlinear Systems, Stephen Ligtenberg 2015 Bowdoin College

Mathematical Notions Of Resilience: The Effects Of Disturbancei In One-Dimensional Nonlinear Systems, Stephen Ligtenberg

Honors Projects

No abstract provided.


Mathematical Modeling And Optimal Control Of Alternative Pest Management For Alfalfa Agroecosystems, Cara Sulyok 2015 Ursinus College

Mathematical Modeling And Optimal Control Of Alternative Pest Management For Alfalfa Agroecosystems, Cara Sulyok

Mathematics Honors Papers

This project develops mathematical models and computer simulations for cost-effective and environmentally-safe strategies to minimize plant damage from pests with optimal biodiversity levels. The desired goals are to identify tradeoffs between costs, impacts, and outcomes using the enemies hypothesis and polyculture in farming. A mathematical model including twelve size- and time-dependent parameters was created using a system of non-linear differential equations. It was shown to accurately fit results from open-field experiments and thus predict outcomes for scenarios not covered by these experiments.

The focus is on the application to alfalfa agroecosystems where field experiments and data were conducted and provided ...


Complementary Effect Of Electrical And Inhibitory Coupling In Bursting Synchronization, Kevin Daley 2015 Georgia State University

Complementary Effect Of Electrical And Inhibitory Coupling In Bursting Synchronization, Kevin Daley

Georgia State Undergraduate Research Conference

gsurc 2015


Quantitative And Qualitative Stability Analysis Of Polyrhythmic Circuits, Drake Knapper 2015 Georgia State University

Quantitative And Qualitative Stability Analysis Of Polyrhythmic Circuits, Drake Knapper

Georgia State Undergraduate Research Conference

No abstract provided.


Digital Commons powered by bepress