Open Access. Powered by Scholars. Published by Universities.®

Nucleic Acids, Nucleotides, and Nucleosides Commons

Open Access. Powered by Scholars. Published by Universities.®

215 Full-Text Articles 603 Authors 68,046 Downloads 50 Institutions

All Articles in Nucleic Acids, Nucleotides, and Nucleosides

Faceted Search

215 full-text articles. Page 3 of 9.

Phosphodiesterase Isoforms And Camp Compartments In The Development Of New Therapies For Obstructive Pulmonary Diseases, Martina Schmidt, Isabella Cattani-Cavalieri, Francisco J. Nuñez, Rennolds S. Ostrom 2020 University of Groningen

Phosphodiesterase Isoforms And Camp Compartments In The Development Of New Therapies For Obstructive Pulmonary Diseases, Martina Schmidt, Isabella Cattani-Cavalieri, Francisco J. Nuñez, Rennolds S. Ostrom

Pharmacy Faculty Articles and Research

The second messenger molecule 3′5′-cyclic adenosine monophosphate (cAMP) imparts several beneficial effects in lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). While cAMP is bronchodilatory in asthma and COPD, it also displays anti-fibrotic properties that limit fibrosis. Phosphodiesterases (PDEs) metabolize cAMP and thus regulate cAMP signaling. While some existing therapies inhibit PDEs, there are only broad family specific inhibitors. The understanding of cAMP signaling compartments, some centered around lipid rafts/caveolae, has led to interest in defining how specific PDE isoforms maintain these signaling microdomains. The possible altered expression of PDEs, and thus abnormal …


Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson II, Michael Ibba 2020 The Ohio State University

Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation—initiation, elongation, and termination—cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels …


Synthesis, Characterisation And Biological Evaluation Of Tyramine Derived Schiff Base Ligand And Its Transition Metal(Ii) Complexes, Abdul Khader Jailani, N.S.K. Gowthaman, Mookkandi Palsamy Kesavan 2020 Hajee Karutha Rowther Howdia College, Uthamapalayam-625 533,Tamil Nadu,India.

Synthesis, Characterisation And Biological Evaluation Of Tyramine Derived Schiff Base Ligand And Its Transition Metal(Ii) Complexes, Abdul Khader Jailani, N.S.K. Gowthaman, Mookkandi Palsamy Kesavan

Karbala International Journal of Modern Science

In this study, a new tyramine derived Schiff base ligand (L) (L=1,3-phenylene-bis-4-aminoantipyrinyl-4-aminoethylphenol) and its derived transition metal(II) complexes [Cu(L)Cl2](1), [Ni(L)Cl2](2), [Co(L)Cl2] (3) and [Zn(L)Cl2] (4) have been synthesized and well characterized by the way of different spectroscopic and analytical techniques. Analytical and spectroscopic studies result suggests that metal(II) complexes more probably have octahedral geometry. DNA binding tendency of L and metal(II) complexes 1-4 have been assessed by probing their ability to bind with Calf Thymus DNA (CT-DNA) via electronic absorption and cyclic voltammetry titration methods. The results clearly reveal that the metal(II) …


Comparative Antiviral Activity Of Remdesivir And Anti-Hiv Nucleoside Analogs Against Human Coronavirus 229e (Hcov-229e), Keykavous Parang, Naglaa Salem El-Sayed, Assad J. Kazeminy, Rakesh Tiwari 2020 Chapman University

Comparative Antiviral Activity Of Remdesivir And Anti-Hiv Nucleoside Analogs Against Human Coronavirus 229e (Hcov-229e), Keykavous Parang, Naglaa Salem El-Sayed, Assad J. Kazeminy, Rakesh Tiwari

Pharmacy Faculty Articles and Research

Remdesivir is a nucleotide prodrug that is currently undergoing extensive clinical trials for the treatment of COVID-19. The prodrug is metabolized to its active triphosphate form and interferes with the action of RNA-dependent RNA polymerase of SARS-COV-2. Herein, we report the antiviral activity of remdesivir against human coronavirus 229E (HCoV-229E) compared to known anti-HIV agents. These agents included tenofovir (TFV), 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA), alovudine (FLT), lamivudine (3TC), and emtricitabine (FTC), known as nucleoside reverse-transcriptase inhibitors (NRTIs), and a number of 5′-O-fatty acylated anti-HIV nucleoside conjugates. The anti-HIV nucleosides interfere with HIV RNA-dependent DNA polymerase and/or act as chain terminators. …


Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba 2020 The Ohio State University

Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key …


Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell 2020 The Ohio State University

Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and independently in eight distinct clades of trypanosomes, identifying parasite-specific informative features, …


Elucidating Molecular Function Of Mithramycin And Analogues For The Treatment Of Ews-Ets Expressing Cancers, Reiya Hayden 2020 University of Kentucky

Elucidating Molecular Function Of Mithramycin And Analogues For The Treatment Of Ews-Ets Expressing Cancers, Reiya Hayden

Theses and Dissertations--Pharmacy

Introduction: Chromosomal translocations are common in cancer. In many cancers such as prostate cancer, leukemia and Ewing sarcoma, chromosomal translocations are the main driver of malignancy. Ewing sarcoma is a cancer diagnosed mostly in children and adolescents that has very grim outcomes for patients with metastasis and recurrent disease. Malignancy in Ewing sarcoma is due to EWS-FLI1, an aberrant transcription factor that is the result of a chromosomal translocation. EWS-FLI1 is the main driver of oncogenesis in Ewing sarcoma and has been the target of many drugs developed to treat the disease. Mithramycin (MTM) was identified as a potent inhibitor …


Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba 2019 The Ohio State University

Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mechanisms have evolved to prevent errors in replication, transcription, and translation of genetic material, with translational errors occurring most frequently. Errors in protein synthesis can occur at two steps, during tRNA aminoacylation and ribosome decoding. Recent advances in protein mass spectrometry have indicated that previous reports of translational errors have potentially underestimated the frequency of these events, but also that the majority of translational errors occur during ribosomal decoding, suggesting that aminoacylation errors are evolutionarily less tolerated. Despite that interpretation, there is evidence that some aminoacylation errors may be regulated, and thus provide a benefit to the cell, while others …


A Systematic Comparison Of Lipopolymers For Sirna Delivery To Multiple Breast Cancer Cell Lines: In Vitro Studies, Hamidreza Montazeri Aliabadi, Remant Bahadur KC, Emira Bousoik, Ashley Barbarino, Bindu Thapa, Melissa Coyle, Parvin Mahdipoor, Hasan Uludağ 2019 Chapman University

A Systematic Comparison Of Lipopolymers For Sirna Delivery To Multiple Breast Cancer Cell Lines: In Vitro Studies, Hamidreza Montazeri Aliabadi, Remant Bahadur Kc, Emira Bousoik, Ashley Barbarino, Bindu Thapa, Melissa Coyle, Parvin Mahdipoor, Hasan Uludağ

Pharmacy Faculty Articles and Research

Small interfering RNA (siRNA) therapy is a promising approach for treatment of a wide range of cancers, including breast cancers that display variable phenotypic features. To explore the general utility of siRNA therapy to control aberrant expression of genes in breast cancer, we conducted a detailed analysis of siRNA delivery and silencing response in vitro in 6 separate breast cancer cell models (MDA-MB-231, MDA-MB-231-KRas-CRM, MCF-7, AU565, MDA-MB-435 and MDA-MB-468 cells). Using lipopolymers for siRNA complexation and delivery, we found a large variation in siRNA delivery efficiency depending on the specific lipopolymer used for siRNA complexation and delivery. Some lipopolymers were …


The Fitness Landscape Of The African Salmonella Typhimurium St313 Strain D23580 Reveals Unique Properties Of The Pbt1 Plasmid, Rocío Canals, Roy R. Chaudhuri, Rebecca E. Steiner, Siân V. Owen, Natalia Quinones-Olvera, Melita A. Gordon, Michael Baym, Michael Ibba, Jay C. D. Hinton 2019 University of Liverpool

The Fitness Landscape Of The African Salmonella Typhimurium St313 Strain D23580 Reveals Unique Properties Of The Pbt1 Plasmid, Rocío Canals, Roy R. Chaudhuri, Rebecca E. Steiner, Siân V. Owen, Natalia Quinones-Olvera, Melita A. Gordon, Michael Baym, Michael Ibba, Jay C. D. Hinton

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These …


Predicting Premature Birth Risk With Cfrna, Jason Lin, Jonathan Marin, John Santerre 2019 Southern Methodist University

Predicting Premature Birth Risk With Cfrna, Jason Lin, Jonathan Marin, John Santerre

SMU Data Science Review

Identifying which genes are early indicators for preterm births using cell-free ribonucleic acid (cfRNA) from non-invasive blood tests provided by pregnant women can improve prenatal care. Currently, there are no medical tests for early detection of preterm birth risk in routine checkups for pregnant women. Recent studies have shown potential genes that can predict preterm birth. Machine learning techniques are utilized to see if the Area Under the Curve (AUC) can be improved upon when evaluating the prediction accuracy for chosen genes sequences and concentrations. Using cell-free RNA data from non-invasive blood tests in conjunction with machine learning, we improve …


Evaluating The Therapeutic Efficacy Of Grb2 Inhibition In Ovarian Malignancies, Olivia Lara 2019 The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences

Evaluating The Therapeutic Efficacy Of Grb2 Inhibition In Ovarian Malignancies, Olivia Lara

Dissertations & Theses (Open Access)

Purpose: Adaptor proteins such as growth factor receptor-bound protein-2 (Grb2) play important roles in cancer cell signaling. In the present study, we examined the biological effects of liposomal antisense oligodeoxynucleotide that blocks Grb2 expression (L-Grb2) in ovarian cancer models.

Experimental Design: Murine orthotopic models of ovarian cancer (OVCAR5 and SKOV3ip1) were used to study the biological effects of L-Grb2 on tumor growth. In vitro experiments (cell viability assay, Western blot analysis, siRNA transfection, and reverse phase protein array) were carried out to elucidate the mechanism and potential predictors of tumor response to L-Grb2.

Results: Treatment with L-Grb2 decreased tumor growth …


Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson II, Michael Ibba 2019 The Ohio State University

Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Many antibiotics available in the clinic today directly inhibit bacterial translation. Despite the past success of such drugs, their efficacy is diminishing with the spread of antibiotic resistance. Through the use of ribosomal modifications, ribosomal protection proteins, translation elongation factors and mistranslation, many pathogens are able to establish resistance to common therapeutics. However, current efforts in drug discovery are focused on overcoming these obstacles through the modification or discovery of new treatment options. Here, we provide an overview for common mechanisms of resistance to translation-targeting drugs and summarize several important breakthroughs in recent drug development.


Nucleoside Analogues For Positron Emission Tomography Imaging And To Study Radiation Mediated Generation Of Radicals From Azides, Maria E. de Cabrera 2019 Florida International University

Nucleoside Analogues For Positron Emission Tomography Imaging And To Study Radiation Mediated Generation Of Radicals From Azides, Maria E. De Cabrera

FIU Electronic Theses and Dissertations

Gemcitabine is a potent anticancer cytidine analogue used to treat solid tumors. Its efficacy is diminished by rapid deamination to a toxic uridine derivative by cytidine deaminase. To overcome this limitation and add radioactive nuclei (18F or 68Ga) for PET imaging, I synthesized two 4--alkylgemcitabine analogues i) bearing β-keto tosylate moiety for subsequent 18F-fluorination and ii) having SCN-Bn-NOTA chelator to complex 68Ga. The first was synthesized by replacement of tosylamide in 4--tosylgemcitabine with 1-amino-10-undecene, followed by elaboration of terminal alkene through dihydroxylation, regioselective tosylation and oxidation. Subsequent fluorination using KF in …


Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker 2019 Chapman University

Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approaches, including tree based methods, random forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide sequences for classification of cancer driver mutations was initially explored by employing label encoding, one hot encoding, and embedding to …


A Robust Delivery System For Rna Therapeutics, Suleyman Bozal 2019 University of Connecticut

A Robust Delivery System For Rna Therapeutics, Suleyman Bozal

University Scholar Projects

The field of RNA therapeutics is currently undergoing both transformation and expansion. Specifically, research in lipid nanoparticle (LNP) based RNA therapeutics is gaining significant traction. Other research into mechanisms of gene regulation and manipulation, including siRNA and the CRISPR/Cas9 system have demonstrated the potential of RNA-based disease treatment. This work identifies a delivery system which can regulate expression of green fluorescent protein (GFP) in human embryonic kidney cells (HEK293) stably expressing GFP.

Analysis of siRNA-induced gene knockdown demonstrates that the current siRNA-LNP formulation is equally as effective as a commercially available transfection reagent, Lipofectamine RNAiMAX (RNAiMAX), which is designed specifically …


A Robust Delivery System For Rna Therapeutics, Suleyman Bozal 2019 University of Connecticut

A Robust Delivery System For Rna Therapeutics, Suleyman Bozal

Honors Scholar Theses

The field of RNA therapeutics is currently undergoing both transformation and expansion. Specifically, research in lipid nanoparticle (LNP) based RNA therapeutics is gaining significant traction. Other research into mechanisms of gene regulation and manipulation, including siRNA and the CRISPR/Cas9 system have demonstrated the potential of RNA-based disease treatment. This work identifies a delivery system which can regulate expression of green fluorescent protein (GFP) in human embryonic kidney cells (HEK293) stably expressing GFP.

Analysis of siRNA-induced gene knockdown demonstrates that the current siRNA-LNP formulation is equally as effective as a commercially available transfection reagent, Lipofectamine RNAiMAX (RNAiMAX), which is designed specifically …


Overcoming Degradation: A Novel Synthetic Strategy For Antisense Oligonucleotide Analogs, Annie Lin 2019 James Madison University

Overcoming Degradation: A Novel Synthetic Strategy For Antisense Oligonucleotide Analogs, Annie Lin

Senior Honors Projects, 2010-2019

Antisense oligonucleotides (ASO) are single-stranded deoxyribonucleic acids that bind to mRNA to inhibit the synthesis of proteins that have been associated with the central mechanisms of disease development. Due to their gene silencing capabilities, the potential for ASOs as therapeutic agents is wide, but many toxicological challenges such as poor membrane permeability, low solubility, and rapid degradation by exonucleases must be overcome before ASO medications can be reliably utilized. In order to negate these challenges, the natural sugar- phosphate backbone of ASO’s, which is responsible for its rapid degradation, will be replaced by one that is hydrolytically stable. To do …


Effect Of Salt Concentration On Electrochemical Detection Of Dna, Ziming Dong, Eddie Madrigal, Ryan West Dr. 2019 University of San Francisco

Effect Of Salt Concentration On Electrochemical Detection Of Dna, Ziming Dong, Eddie Madrigal, Ryan West Dr.

Creative Activity and Research Day - CARD

Electrochemical approaches for biological sensing offer the potential advantages of facile sample preparation, fast response times, ease of parallel and multiplexed measurements, and the possibility of miniaturization (of sample sizes, electrodes, and associated electronics). All of these factors contribute towards the feasibility of electrochemical methods in biological sensing and analysis. This potential has already been achieved with the commercialization of blood glucose meters, which often rely on an electrochemical transduction mechanism. We have previously demonstrated the ability to electrochemically detect and differentiate complementary and mismatched DNA using our method of melting DNA duplexes at electrified gold surfaces, i.e. e-melting. Recently, …


Saturated Fatty Acid Activates T Cell Inflammation Through A Nicotinamide Nucleotide Transhydrogenase (Nnt)-Dependent Mechanism, Grace McCambridge, Madhur Agrawal, Alanna Keady, Philip A. Kern, Hatice Hasturk, Barbara S. Nikolajczyk, Leena P. Bharath 2019 Merrimack College

Saturated Fatty Acid Activates T Cell Inflammation Through A Nicotinamide Nucleotide Transhydrogenase (Nnt)-Dependent Mechanism, Grace Mccambridge, Madhur Agrawal, Alanna Keady, Philip A. Kern, Hatice Hasturk, Barbara S. Nikolajczyk, Leena P. Bharath

Honors Senior Capstone Projects

Circulating fatty acids (FAs) increase with obesity and can drive mitochondrial damage and inflammation. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial protein that positively regulates nicotinamide adenine dinucleotide phosphate (NADPH), a key mediator of energy transduction and redox homeostasis. The role that NNT-regulated bioenergetics play in the inflammatory response of immune cells in obesity is untested. Our objective was to determine how free fatty acids (FFAs) regulate inflammation through impacts on mitochondria and redox homeostasis of peripheral blood mononuclear cells (PBMCs). PBMCs from lean subjects were activated with a T cell-specific stimulus in the presence or absence of generally pro-inflammatory …


Digital Commons powered by bepress