Open Access. Powered by Scholars. Published by Universities.®

Other Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

155 Full-Text Articles 314 Authors 46,787 Downloads 62 Institutions

All Articles in Other Cell and Developmental Biology

Faceted Search

155 full-text articles. Page 1 of 7.

Methods For Assessing Cellular Phenotypes Related To Aging And Longevity In Turtles, Stephanie E. Bulls 2022 University of South Alabama

Methods For Assessing Cellular Phenotypes Related To Aging And Longevity In Turtles, Stephanie E. Bulls

Theses and Dissertations

There are many costs associated with increased body size and longevity in animals, including the accumulation of genotoxic and cytotoxic damage that comes with having more cells and living longer. Yet, some species have overcome these barriers and have evolved remarkably large body sizes and long lifespans. Organisms with these unique phenotypes have come under recent genomic scrutiny to discover mechanisms of healthy aging and tumor suppression but little physiological work to validate these mechanisms has been conducted outside of mammals. Here I propose that reptiles, especially testudines (turtles), would be an excellent system to investigate the topics of size ...


Feasibility Of Tubulin As A Control For Gene Expression Following Transfection In Mouse Monocyte/Macrophage-Like Cells, Ankita Chabra 2022 St. Mary's University

Feasibility Of Tubulin As A Control For Gene Expression Following Transfection In Mouse Monocyte/Macrophage-Like Cells, Ankita Chabra

St. Mary's University Honors Theses and Projects

Transfection, which is the ability to modify host cells’ genetic content, has broad application in studying normal cellular processes, molecular mechanism of disease and gene therapy. There are several transfection techniques, and all require either a control or a reference gene. Commonly used controls for transfection experiments are housekeeping genes, which maintain expression for a given cell/tissue, experimental conditions, and treatment. However, recent research has uncovered that expression levels of housekeeping genes may vary depending on the gene, cell type and experimental conditions. A growing body of evidence demonstrates that housekeeping genes are inadequate internal standards for measuring gene ...


Amphiphilic Cell-Penetrating Peptides Containing Natural And Unnatural Amino Acids As Drug Delivery Agents, David Salehi, Saghar Mozaffari, Khalid Zoghebi, Sandeep Lohan, Dindyal Mandal, Rakesh Tiwari, Keykavous Parang 2022 Chapman University

Amphiphilic Cell-Penetrating Peptides Containing Natural And Unnatural Amino Acids As Drug Delivery Agents, David Salehi, Saghar Mozaffari, Khalid Zoghebi, Sandeep Lohan, Dindyal Mandal, Rakesh Tiwari, Keykavous Parang

Pharmacy Faculty Articles and Research

A series of cyclic peptides, [(DipR)(WR)4], [(DipR)2(WR)3], [(DipR)3(WR)2], [(DipR)4(WR)], and [DipR]5, and their linear counterparts containing arginine (R) as positively charged residues and tryptophan (W) or diphenylalanine (Dip) as hydrophobic residues, were synthesized and evaluated for their molecular transporter efficiency. The in vitro cytotoxicity of the synthesized peptides was determined in human epithelial ovary adenocarcinoma cells (SK-OV-3), human lymphoblast peripheral blood cells (CCRF-CEM), human embryonic epithelial kidney healthy cells (HEK-293), human epithelial mammary gland adenocarcinoma cells (MDA-MB-468), pig epithelial kidney normal cells (LLC-PK1), and human epithelial fibroblast uterine sarcoma ...


Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba 2022 The Ohio State University

Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that synthesize aminoacyl-tRNAs to facilitate translation of the genetic code. Quality control by aaRS proofreading and other mechanisms maintains translational accuracy, which promotes cellular viability. Systematic disruption of proofreading, as recently demonstrated for alanyl-tRNA synthetase (AlaRS), leads to dysregulation of the proteome and reduced viability. Recent studies showed that environmental challenges such as exposure to reactive oxygen species can also alter aaRS synthetic and proofreading functions, prompting us to investigate if oxidation might positively or negatively affect AlaRS activity. We found that while oxidation leads to modification of several residues in Escherichia coli AlaRS, unlike ...


The Coxsackievirus And Adenovirus Receptor Has A Short Half-Life In Epithelial Cells, Poornima Kotha Lakshmi Narayan, James M. Readler, Mahmoud S. Alghamri, Trisha L. Brockman, Ray Yan, Priyanka Sharma, Vladislav Snitsarev, Katherine J.D.A Excoffon, Abimbola O. Kolawole 2022 Wright State University

The Coxsackievirus And Adenovirus Receptor Has A Short Half-Life In Epithelial Cells, Poornima Kotha Lakshmi Narayan, James M. Readler, Mahmoud S. Alghamri, Trisha L. Brockman, Ray Yan, Priyanka Sharma, Vladislav Snitsarev, Katherine J.D.A Excoffon, Abimbola O. Kolawole

Department of Biology Faculty Scholarship and Creative Works

The coxsackievirus and adenovirus receptor (CAR) is an essential cellular protein that is involved in cell adhesion, cell signaling, and viral infection. The 8-exon encoded isoform (CAREx8) resides at the apical surface of polarized epithelia, where it is accessible as a receptor for adenovirus entering the airway lumen. Given its pivotal role in viral infection, it is a target for antiviral strategies. To understand the regulation of CAREx8 and determine the feasibility of receptor down regulation, the half-life of total and apical localized CAREx8 was determined and correlated with adenovirus transduction. Total and apical CAREx8 has a relatively short half-life ...


A Comparison Of Calcium Aggregation And Ultracentrifugation Methods For The Preparation Of Rat Brain Microsomes For Drug Metabolism Studies, Barent N. DuBois, Farideh Amirrad, Reza Mehvar 2021 Chapman University

A Comparison Of Calcium Aggregation And Ultracentrifugation Methods For The Preparation Of Rat Brain Microsomes For Drug Metabolism Studies, Barent N. Dubois, Farideh Amirrad, Reza Mehvar

Pharmacy Faculty Articles and Research

Preparation of brain microsomes by the calcium chloride aggregation method has been suggested as an alternative to the ultracentrifugation method. However, the effects of the calcium chloride concentration on the quality of the microsomal fractions are not known. Brain microsomes were prepared from the adult rat brains using the high-speed ultracentrifugation and low-speed calcium chloride (10–100 mM) aggregation methods (n = 5–6 per group). The microsomal protein yield (spectrometry), the cytochrome P450 reductase (CPR) activity (spectrometry), and the monooxygenase activities (UPLC-MS/MS) of CYP2D and CYP2E1 were determined in the obtained fractions. Increasing the concentrations of calcium chloride progressively ...


Proteoglycan-4 Is An Essential Regulator Of Synovial Macrophage Polarization And Inflammatory Macrophage Joint Infiltration, Marwa Qadri, Gregory D. Jay, Ling X. Zhang, Tannin A. Schmidt, Jennifer Totonchy, Khaled A. Elsaid 2021 Chapman University

Proteoglycan-4 Is An Essential Regulator Of Synovial Macrophage Polarization And Inflammatory Macrophage Joint Infiltration, Marwa Qadri, Gregory D. Jay, Ling X. Zhang, Tannin A. Schmidt, Jennifer Totonchy, Khaled A. Elsaid

Pharmacy Faculty Articles and Research

Background

Synovial macrophages perform a multitude of functions that include clearance of cell debris and foreign bodies, tissue immune surveillance, and resolution of inflammation. The functional diversity of macrophages is enabled by distinct subpopulations that express unique surface markers. Proteoglycan-4 (PRG4) is an important regulator of synovial hyperplasia and fibrotic remodeling, and the involvement of macrophages in PRG4’s synovial role is yet to be defined. Our objectives were to study the PRG4’s importance to macrophage homeostatic regulation in the synovium and infiltration of pro-inflammatory macrophages in acute synovitis and investigate whether macrophages mediated synovial fibrosis in Prg4 gene-trap ...


Suppression Of Dc-Sign And Gh Reveals Complex, Subset-Specific Mechanisms For Kshv Entry In Primary B Lymphocytes, Nancy Palmerin, Farizeh Aalam, Romina Nabiee, Murali Muniraju, Javier Gordon Ogembo, Jennifer Totonchy 2021 Chapman University

Suppression Of Dc-Sign And Gh Reveals Complex, Subset-Specific Mechanisms For Kshv Entry In Primary B Lymphocytes, Nancy Palmerin, Farizeh Aalam, Romina Nabiee, Murali Muniraju, Javier Gordon Ogembo, Jennifer Totonchy

Pharmacy Faculty Articles and Research

Kaposi sarcoma-associated herpesvirus (KSHV) is the causative agent of multiple cancers in immunocompromised patients including two lymphoproliferative disorders associated with KSHV infection of B lymphocytes. Despite many years of research into the pathogenesis of KSHV associated diseases, basic questions related to KSHV molecular virology remain unresolved. One such unresolved question is the cellular receptors and viral glycoproteins needed for KSHV entry into primary B lymphocytes. In this study, we assess the contributions of KSHV glycoprotein H (gH) and the cellular receptor DC-SIGN to KSHV infection in tonsil-derived B lymphocytes. Our results show that (1) neither KSHV-gH nor DC-SIGN are essential ...


Dimeric Allostery Mechanism Of The Plant Circadian Clock Photoreceptor Zeitlupe, Francesco Trozzi, Feng Wang, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao 2021 Southern Methodist University

Dimeric Allostery Mechanism Of The Plant Circadian Clock Photoreceptor Zeitlupe, Francesco Trozzi, Feng Wang, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

In Arabidopsis thaliana, the Light-Oxygen-Voltage (LOV) domain containing protein ZEITLUPE (ZTL) integrates light quality, intensity, and duration into regulation of the circadian clock. Recent structural and biochemical studies of ZTL indicate that the protein diverges from other members of the LOV superfamily in its allosteric mechanism, and that the divergent allosteric mechanism hinges upon conservation of two signaling residues G46 and V48 that alter dynamic motions of a Gln residue implicated in signal transduction in all LOV proteins. Here, we delineate the allosteric mechanism of ZTL via an integrated computational approach that employs atomistic simulations of wild type and allosteric ...


Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf 2021 The University of Western Ontario

Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf

Electronic Thesis and Dissertation Repository

Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of a pluripotency continuum, respectively referred to as naïve and primed pluripotent states. A third, recently discovered intermediate state has been described as the ‘formative state’. Metabolism has been traditionally regarded as a by-product of cell fate; however, recent evidence now supports metabolism as promoting stem cell fate. Pyruvate kinase muscle isoforms 1 and 2 (PKM1 and PKM2) catalyze the final, rate limiting step of glycolysis generating adenosine triphosphate (ATP) and pyruvate; however, the precise role(s) of these isozymes in naïve, formative, and primed pluripotency ...


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan 2021 University of Connecticut

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

University Scholar Projects

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the ...


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan 2021 University of Connecticut

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the ...


B25: Generation And Characterization Of Sars-Cov-2 Spike Protein-Pseudotyped Lentivirus Particles For Use In Neutralizing Antibody Titer Testing Of Human Serum, Luis Sanchez 2021 Roseman University of Health Sciences

B25: Generation And Characterization Of Sars-Cov-2 Spike Protein-Pseudotyped Lentivirus Particles For Use In Neutralizing Antibody Titer Testing Of Human Serum, Luis Sanchez

Annual Research Symposium

No abstract provided.


The Age-Dependent Characterization Of The Er-Alpha Positive Breast Cancer Tumor Microenvironment, Katie Marie Hamel 2021 Louisiana State University and Agricultural and Mechanical College

The Age-Dependent Characterization Of The Er-Alpha Positive Breast Cancer Tumor Microenvironment, Katie Marie Hamel

LSU Doctoral Dissertations

In disease states such as cancer, endocrine and paracrine signals from adipose tissue contribute to cancer progression and drug resistance. Young individuals diagnosed with estrogen receptor-alpha positive (ER-a+) breast cancer have an observed increase in resistance to endocrine therapies. This suggests that an alternative estrogen signaling pathway is active within these tumors. Despite this, the effects of stromal age on the endocrine response in breast cancer is not well known. Here, we review and highlight the involvement of the stromal age in both tumorigenesis and physiological wound healing. To identify specific differences between young and aged ER-a+ breast tumors, RNA ...


Inhibition Of Biofilm Formation By The Synergistic Action Of Egcg-S And Antibiotics, Shrameeta Shinde, Lee Lee, Tinchun Chu 2021 Miami University - Oxford

Inhibition Of Biofilm Formation By The Synergistic Action Of Egcg-S And Antibiotics, Shrameeta Shinde, Lee Lee, Tinchun Chu

Department of Biology Faculty Scholarship and Creative Works

Biofilm, a stress-induced physiological state, is an established means of antimicrobial tolerance. A perpetual increase in multidrug resistant (MDR) infections associated with high mortality and morbidity have been observed in healthcare settings. Multiple studies have indicated that the use of natural products can prevent bacterial growth. Recent studies in the field have identified that epigallocatechin gallate (EGCG), a green tea polyphenol, could disrupt bacterial biofilms. A modified lipid-soluble EGCG, epigallocatechin-3-gallate-stearate (EGCG-S), has enhanced the beneficial properties of green tea. This study focuses on utilizing EGCG-S as a novel synergistic agent with antibiotics to prevent or control biofilm. Different formulations of ...


Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne 2021 Technological University Dublin

Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne

Articles

Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS ...


Functional Genetic Approaches To Provide Evidence For The Role Of Toolkit Genes In The Evolution Of Complex Color Patterns In Drosophila Guttifera, Mujeeb Olushola Shittu 2021 Michigan Technological University

Functional Genetic Approaches To Provide Evidence For The Role Of Toolkit Genes In The Evolution Of Complex Color Patterns In Drosophila Guttifera, Mujeeb Olushola Shittu

Dissertations, Master's Theses and Master's Reports

Toolkit genes are set of genes that orchestrate the development of basic body plan of animals, and they are highly conserved in all animals. The co-option of the toolkit genes into the pigmentation pathway has led to the evolution of novel species. This study focuses on understanding how the complex color patterns in animals develop by using the Drosophila species in the quinaria group as models. We developed an mRNA in situ hybridization (ISH) protocol, which allowed us to study gene expression patterns in the abdomen of developing pupae of non-model Drosophila species (Chapter 2). Through ISH, we found that ...


Expansion Microscopy To Visualize Cell-Cycle Events In The Abbreviated Cell Cycle In Caenorhabditis Elegans (Roundworm) Germline Stem Cells, Taylor Campbell 2021 Eastern Michigan University

Expansion Microscopy To Visualize Cell-Cycle Events In The Abbreviated Cell Cycle In Caenorhabditis Elegans (Roundworm) Germline Stem Cells, Taylor Campbell

Master's Theses and Doctoral Dissertations

The abbreviated cell cycle is a poorly understood form of the cell cycle essential for genome stability in stem cells. To visualize cell-cycle events in the abbreviated cell cycle, we optimized a protocol for expansion microscopy in stem cells of the reproductive system of the model organism C. elegans. Optimizations included development of new mounting techniques and modifications to DNA staining methods. These optimizations produced brighter samples that were easier to find and focus on at the microscope. These optimizations, combined with future labeling of DNA replication, will expand our understanding of how cells with an abbreviated cell cycle maintain ...


The Role Of Daam1 In Kidney Development, vanja krneta-stankic 2020 The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences

The Role Of Daam1 In Kidney Development, Vanja Krneta-Stankic

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

Kidneys, like most organs in our bodies, consist of a network of epithelial tubules. Kidney tubules are called nephrons, and their morphology is important for kidney function. Nephrons develop from mesodermally derived aggregates of progenitor cells. The nephric progenitors organize into nephric tubules lined with hair-like sensory projections called cilia. Many diseases of the kidney are characterized by abnormal nephron morphology with current treatment aimed at symptom control. To understand the mechanisms underlying kidney diseases and achieve the development of novel therapies, a better understanding of how nephrons develop is needed. Although the actin cytoskeleton is critical for cell behaviors ...


The Role Of Daam1 In Kidney Development, vanja krneta-stankic 2020 The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences

The Role Of Daam1 In Kidney Development, Vanja Krneta-Stankic

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

Kidneys, like most organs in our bodies, consist of a network of epithelial tubules. Kidney tubules are called nephrons, and their morphology is important for kidney function. Nephrons develop from mesodermally derived aggregates of progenitor cells. The nephric progenitors organize into nephric tubules lined with hair-like sensory projections called cilia. Many diseases of the kidney are characterized by abnormal nephron morphology with current treatment aimed at symptom control. To understand the mechanisms underlying kidney diseases and achieve the development of novel therapies, a better understanding of how nephrons develop is needed. Although the actin cytoskeleton is critical for cell behaviors ...


Digital Commons powered by bepress