Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 1359

Full-Text Articles in Optics

Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani Apr 2023

Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani

Optical Science and Engineering ETDs

Intriguing photophysical properties of color centers in diamond make them ideal candidates for many applications from imaging and sensing to quantum networking. In the first part of this work, we have studied the silicon vacancy (SiV) centers in diamond for nanoscale imaging applications. We showed that these centers are promising fluorophores for Stimulated Emission Depletion (STED) microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. In the second part, we built a femtotesla Radio-Frequency (RF) magnetometer based on the diamond nitrogen vacancy (NV) centers and magnetic flux concentrators. We used this sensor to remotely detect Nuclear Quadrupole Resonance …


Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna Apr 2023

Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna

Electrical Engineering Theses

This thesis presents a study on the optical characteristics of hollow-core photonic crystal fibers (HC-PCFs) with a band gap cladding structure and their applications in optical fiber sensing. This 800B HC-PCF exhibited excellent optical properties and has a flexible structure, which makes them suitable for a wide range of industrial applications. Finite element simulations and structural optimization designs were conducted using the surface plasmon resonance (SPR) technique to determine the optimal performance parameters of the 800B HC-PCF. The fiber was further modified using the SPR technique to improve its practical detection capabilities. The performance of the modified fiber was observed …


Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison Mar 2023

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison

Engineering Faculty Articles and Research

In modern communications networks, data is transmitted over long distances using optical fibers. At nodes in the network, the data is converted to an electrical signal to be processed, and then converted back into an optical signal to be sent over fiber optics. This process results in higher power consumption and adds to transmission time. However, by processing the data optically, we can begin to alleviate these issues and surpass systems which rely on electronics. One promising approach for this is plasmonic devices. Plasmonic waveguide devices have smaller footprints than silicon photonics for more compact photonic integrated circuits, although they …


The Employees’ Perspective: Situational Leadership Style Flexibility And Effectiveness And Employee Performance In A Technological Organization, Merari Cortes Jan 2023

The Employees’ Perspective: Situational Leadership Style Flexibility And Effectiveness And Employee Performance In A Technological Organization, Merari Cortes

Walden Dissertations and Doctoral Studies

Poor employee performance can have adverse effects on business outcomes. Business leaders are concerned with poor performance, which can minimize profitability and negatively impact business sustainability. Grounded in the Situational Leadership II® model, the purpose of this quantitative correlational study was to examine the relationship between situational leadership style flexibility, effectiveness, and employee performance as perceived by employees, controlling for employee gender, job location, and tenure. A random sample of 99 technology company employees completed the Leader Behavior Analysis II®– Other and the Employee Job Performance measurement tools. Using hierarchical multilinear regression, employee gender, job location, and tenure were entered …


Fabrication And Optical Properties Of Two-Dimensional Transition Metal Dichalcogenides, Manpreet Boora Jan 2023

Fabrication And Optical Properties Of Two-Dimensional Transition Metal Dichalcogenides, Manpreet Boora

Dissertations, Master's Theses and Master's Reports

Two-dimensional layered materials such as graphene and transition metal dichalcogenides have gained a lot of attention because of their distinctive chemical, optical, and electronic properties. Transition metal dichalcogenides can have a tunable bandgap in the range of 1 − 3 eV (visible), which enables their applications in ultrathin field effect transistors, photovoltaics, sensors, and optoelectronic devices. They exhibit an indirect-to-direct band gap transition when thinned down from bulk to a single layer. They show strong photoluminescence, electron–photon interaction, valley pseudospin, nonlinear optical response, and lack of dangling bonds. Many exotic phenomena appear when materials are thinned to nanoscale size because …


Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew Dec 2022

Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Imaging of both the positions and orientations of single fluorophores, termed single-molecule orientation-localization microscopy, is a powerful tool for the study of biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here we realize a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the three-dimensional (3D) positions and 3D orientations of single molecules, with precisions of 10.9 nm and 2.0° over a 1.5-μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red molecules transiently bound to lipid-coated spheres, accurately resolving …


Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin Dec 2022

Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin

Optical Science and Engineering ETDs

The creation of a laser cooled semiconductor device has been a long sought achievement. GaAs-based devices have emerged as a promising candidate for the realization of this goal. Efforts to improve the efficiency of such devices have enabled the material to exhibit external quantum efficiencies (EQE, a measure of the probability that an excitation leads to the emission of a photon) of 99.5\%. Despite this impressive feat, a laser coolable device remains elusive.

To investigate the obstacles to such a device, the material characteristics of GaAs-based double heterostructures (DHS) are theoretically and experimentally examined. Through this study, a GaAs $\vert$ …


Oam-Based Wavelets In A High Speed Optical Probing System For Measuring The Angular Decomposition Of The Environment, Justin Free Dec 2022

Oam-Based Wavelets In A High Speed Optical Probing System For Measuring The Angular Decomposition Of The Environment, Justin Free

All Theses

This thesis presents the theoretical development of orbital angular momentum (OAM) based wavelets for the analysis of localized OAM information in space. An optical probing system for generating and detecting these wavelets is demonstrated; individual wavelets can scan the environment in 10µs or less. The probing system was applied to a three-dimensional atmospheric turbulence distribution to obtain a continuous wavelet transform of the angular information of the turbulent propagation path about a fixed radius. An entire continuous wavelet transform was measured in 3.8ms; the measurements are much faster than the turbulence and give insight into the short time scale of …


Reducing Instrumentation Barriers Of Diffuse Correlation Spectroscopy For Low-Cost Deep Tissue Blood Flow Monitoring, Arindam Biswas Nov 2022

Reducing Instrumentation Barriers Of Diffuse Correlation Spectroscopy For Low-Cost Deep Tissue Blood Flow Monitoring, Arindam Biswas

USF Tampa Graduate Theses and Dissertations

Cerebral blood flow (CBF) is a good indicator of brain health as blood carries necessary nutrients, oxygen, and metabolic byproducts. Quantitative blood flow information can be used in several clinical and therapeutic applications such as stroke detection, measuring autoregulation, evaluating brain injury, or determining neuronal activity. Over the past few decades, light-based deep tissue hemodynamic detection modalities have become popular for non-invasive CBF measurements. In particular, noninvasive Diffuse Correlation Spectroscopy (DCS), has become a tool of choice for research and clinical applications due to its depth sensitivity (>1 cm), portability, validity against other technologies such as Magnetic Resonance Imaging …


Frequency Domain Diffuse Optics Spectroscopies For Quantitative Measurement Of Tissue Optical Properties, Sadhu Moka Nov 2022

Frequency Domain Diffuse Optics Spectroscopies For Quantitative Measurement Of Tissue Optical Properties, Sadhu Moka

USF Tampa Graduate Theses and Dissertations

Tissue oxygen saturation, blood flow and blood volume are physiological bio-markers of tissue health. Diffuse Optical Spectroscopy(DOS) and Diffuse Correlation Spectroscopy (DCS) are two complementary approaches to measure tissue oxygen saturation and blood flow respectively. Quantitative Diffuse Optical Spectroscopy (DOS) uses multi-spectral intensities of near-infrared light that have been modulated at RF frequencies to estimate static tissue optical properties and hence concentrations of oxygenated and de-oxygenated hemoglobin. Diffuse Correlation Spectroscopy estimates tissue dynamics - i.e., blood flow, by measuring temporal intensity auto-correlation function of backscattered light diffusing through the tissue. Conventionally, DCS instruments use coherent light sources with constant intensity. …


A Patient-Specific Algorithm For Lung Segmentation In Chest Radiographs, Manawaduge Supun De Silva, Barath Narayanan Narayanan, Russell C. Hardie Nov 2022

A Patient-Specific Algorithm For Lung Segmentation In Chest Radiographs, Manawaduge Supun De Silva, Barath Narayanan Narayanan, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Lung segmentation plays an important role in computer-aided detection and diagnosis using chest radiographs (CRs). Currently, the U-Net and DeepLabv3+ convolutional neural network architectures are widely used to perform CR lung segmentation. To boost performance, ensemble methods are often used, whereby probability map outputs from several networks operating on the same input image are averaged. However, not all networks perform adequately for any specific patient image, even if the average network performance is good. To address this, we present a novel multi-network ensemble method that employs a selector network. The selector network evaluates the segmentation outputs from several networks; on …


Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett Nov 2022

Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett

Optical Science and Engineering ETDs

In this dissertation, I investigate the possibility of lasing and nonlinear phenomena in completely solid-state transverse Anderson localizing optical fibers (TALOFs). I examine three areas within this range of topics. The research in nonlinear phenomena focuses on four-wave mixing (FWM). FWM is of high interest in TALOFs due to the fact that guided localized modes of the fiber each have different propagation constants, and thus unique possible FWM pairs can be generated from the same input pump beam. I demonstrate the generation of FWM in the TALOF by pumping it with 532 nm light into a localized mode and observing …


Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas Nov 2022

Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas

LSU Doctoral Dissertations

Molecular detection techniques have huge potential in clinical environments. In addition to many other molecular detection techniques, endoscopic Raman spectroscopy has great ability in terms of minimal invasiveness and real-time spectra acquisition. However, Raman Effect is low in sensitivity, limiting the application. Surface-Enhanced Raman Scattering (SERS), addresses this limitation. SERS brings rough nano-metallic surfaces in contact with specimen molecules which enormously enhances Raman signals. This provides Raman spectroscopy with immense capabilities for diverse fields of applications.

Generally, in clinical probe applications, the spectrometer is brought near the target molecules for detection. Typically, optical fibers are used to couple spectrometers to …


Optimizing Switching Of Non-Linear Properties With Hyperbolic Metamaterials, James A. Ethridge, John G. Jones, Manuel R. Ferdinandus, Michael J. Havrilla, Michael A. Marciniak Nov 2022

Optimizing Switching Of Non-Linear Properties With Hyperbolic Metamaterials, James A. Ethridge, John G. Jones, Manuel R. Ferdinandus, Michael J. Havrilla, Michael A. Marciniak

Faculty Publications

Hyperbolic metamaterials have been demonstrated to have special potential in their linear response, but the extent of their non-linear response has not been extensively modeled or measured. In this work, novel non-linear behavior of an ITO/SiO2 layered hyperbolic metamaterial is modeled and experimentally confirmed, specifically a change in the sign of the non-linear absorption with intensity. This behavior is tunable and can be achieved with a simple one-dimensional layered design. Fabrication was performed with physical vapor deposition, and measurements were conducted using the Z-scan technique. Potential applications include tunable optical switches, optical limiters, and tunable components of laser sources.


Electro-Optical Sensors For Atmospheric Turbulence Strength Characterization With Embedded Edge Ai Processing Of Scintillation Patterns, Ernst Polnau, Don L. N. Hettiarachchi, Mikhail A. Vorontsov Oct 2022

Electro-Optical Sensors For Atmospheric Turbulence Strength Characterization With Embedded Edge Ai Processing Of Scintillation Patterns, Ernst Polnau, Don L. N. Hettiarachchi, Mikhail A. Vorontsov

Electro-Optics and Photonics Faculty Publications

This study introduces electro-optical (EO) sensors (TurbNet sensors) that utilize a remote laser beacon (either coherent or incoherent) and an optical receiver with CCD camera and embedded edge AI computer (Jetson Xavier Nx) for in situ evaluation of the path-averaged atmospheric turbulence refractive index structure parameter C-n(2) at a high temporal rate. Evaluation of C-n(2) values was performed using deep neural network (DNN)-based real-time processing of short-exposure laser-beacon light intensity scintillation patterns (images) captured by a TurbNet sensor optical receiver. Several pre-trained DNN models were loaded onto the AI computer and used for TurbNet sensor performance evaluation in a set …


Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption, Brian C. Holloway, Christopher A. Lenyk, Timothy D. Gustafson, Nancy C. Giles Oct 2022

Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption, Brian C. Holloway, Christopher A. Lenyk, Timothy D. Gustafson, Nancy C. Giles

Faculty Publications

LiB3O5 (LBO) crystals are used to generate the second, third, and fourth harmonics of near-infrared solid-state lasers. At high power levels, the material’s performance is adversely affected by nonlinear absorption. We show that as-grown crystals contain oxygen and lithium vacancies. Transient absorption bands are formed when these intrinsic defects serve as traps for “free” electrons and holes created by x rays or by three- and four-photon absorption processes. Trapped electrons introduce a band near 300 nm and trapped holes produce bands in the 500-600 nm region. Electron paramagnetic resonance (EPR) is used to identify and characterize the …


Arrayed Waveguide Lens For Beam Steering, Mostafa Honari-Latifpour, Ali Binaie, Mohammad Amin Eftekhar, Nicholas Madamopoulos, Mohammad-Ali Miri Aug 2022

Arrayed Waveguide Lens For Beam Steering, Mostafa Honari-Latifpour, Ali Binaie, Mohammad Amin Eftekhar, Nicholas Madamopoulos, Mohammad-Ali Miri

Publications and Research

Integrated planar lenses are critical components for analog optical information processing that enable a wide range of applications including beam steering. Conventional planar lenses require gradient index control which makes their on-chip realization challenging. Here, we introduce a new approach for beam steering by designing an array of coupled waveguides with segmented tails that allow for simultaneously achieving planar lensing and off-chip radiation. The proposed arrayed waveguide lens is built on engineering the evanescent coupling between adjacent channels to realize a photonic lattice with an equi-distant ladder of propagation constants that emulates the continuous parabolic index profile. Through coupled-mode analysis …


Glaciernet2: A Hybrid Multi-Model Learning Architecture For Alpine Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Michael P. Bishop, Jeffrey S. Kargel, Theus Aspiras Aug 2022

Glaciernet2: A Hybrid Multi-Model Learning Architecture For Alpine Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Michael P. Bishop, Jeffrey S. Kargel, Theus Aspiras

Electrical and Computer Engineering Faculty Publications

In recent decades, climate change has significantly affected glacier dynamics, resulting in mass loss and an increased risk of glacier-related hazards including supraglacial and proglacial lake development, as well as catastrophic outburst flooding. Rapidly changing conditions dictate the need for continuous and detailed ob-servations and analysis of climate-glacier dynamics. Thematic and quantitative information regarding glacier geometry is fundamental for understanding climate forcing and the sensitivity of glaciers to climate change, however, accurately mapping debris-cover glaciers (DCGs) is notoriously difficult based upon the use of spectral information and conventional machine-learning techniques. The objective of this research is to improve upon an …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer Aug 2022

Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer

Optical Science and Engineering ETDs

Results presented here examine the effect of changing gas pressure on the radio frequency (RF) emissions of an ultrashort pulse laser filament plasma and how those emissions vary longitudinally in the laser focal region. We use a WR284 rectangular waveguide with a 1.5 cm hole that allows the beam through. A 3.2 GHz microwave signal is emitted in the waveguide, and signals are received through a waveguide-to-coax antenna connected to an HP8470B Schottky diode. By enabling and disabling the 3.2 GHz signal, we measure both the self-emitted RF from a USPL filament and subsequently the degree of attenuation a filament …


Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke Aug 2022

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke

Graduate Theses and Dissertations

A novel controlled phase gate for photonic quantum computing is proposed by exploiting the powerful nonlinear optical responses of atomically thin transition metal dichalcogenides (TMDs) and it is shown that such a gate could elicit a π-rad phase shift in the outgoing electric field only in the case of two incident photons and no other cases. Firstly, the motivation for such a gate is developed and then the implementation of monolayer TMDs is presented as a solution to previous realization challenges. The single-mode case of incident photons upon a TMD is derived and is then used to constrain the more …


Towards A Low-Cost Solution For Gait Analysis Using Millimeter Wave Sensor And Machine Learning, Mubarak A. Alanazi, Abdullah K. Alhazmi, Osama Alsattam, Kara Gnau, Meghan Brown, Shannon Thiel, Kurt Jackson, Vamsy P. Chodavarapu Aug 2022

Towards A Low-Cost Solution For Gait Analysis Using Millimeter Wave Sensor And Machine Learning, Mubarak A. Alanazi, Abdullah K. Alhazmi, Osama Alsattam, Kara Gnau, Meghan Brown, Shannon Thiel, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Human Activity Recognition (HAR) that includes gait analysis may be useful for various rehabilitation and telemonitoring applications. Current gait analysis methods, such as wearables or cameras, have privacy and operational constraints, especially when used with older adults. Millimeter-Wave (MMW) radar is a promising solution for gait applications because of its low-cost, better privacy, and resilience to ambient light and climate conditions. This paper presents a novel human gait analysis method that combines the micro-Doppler spectrogram and skeletal pose estimation using MMW radar for HAR. In our approach, we used the Texas Instruments IWR6843ISK-ODS MMW radar to obtain the micro-Doppler spectrogram …


Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell Jul 2022

Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell

Optical Science and Engineering ETDs

We describe a novel pulsed magnetic gradiometer based on the optical interference of sidebands generated using two spatially separated alkali vapor cells. The sidebands are produced with high efficiency using parametric frequency conversion of a probe beam interacting with Rubiduim 87 atoms in a coherent superposition of magnetically sensitive hyperfine ground states. First, experimental evidence of the sideband process is described for both steady-state and pulsed operation. Then, a theoretical framework is developed that accurately models sideband generation based on density matrix formalism. The gradiometer is then constructed using two spatially separated vapor cells, and a beat-note is generated. The …


Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz Jun 2022

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz

AFIT Patents

An optoacoustic sensor includes a liquid crystal (LC) cell formed between top and bottom plates of transparent material. A transverse grating formed across the LC cell that forms an optical transmission bandgap. A CL is aligned to form a spring-like, tunable Bragg grating that is naturally responsive to external agitations providing a spectral transition regime, or edge, in the optical transmission bandgap of the transverse grating that respond to broadband acoustic waves. The optoacoustic sensor includes a narrowband light source that is oriented to transmit light through the top plate, the LC cell, and the bottom plate. The optoacoustic sensor …


Imnets: Deep Learning Using An Incremental Modular Network Synthesis Approach For Medical Imaging Applications, Redha A. Ali, Russell C. Hardie, Barath Narayanan Narayanan, Temesguen Messay Jun 2022

Imnets: Deep Learning Using An Incremental Modular Network Synthesis Approach For Medical Imaging Applications, Redha A. Ali, Russell C. Hardie, Barath Narayanan Narayanan, Temesguen Messay

Electrical and Computer Engineering Faculty Publications

Deep learning approaches play a crucial role in computer-aided diagnosis systems to support clinical decision-making. However, developing such automated solutions is challenging due to the limited availability of annotated medical data. In this study, we proposed a novel and computationally efficient deep learning approach to leverage small data for learning generalizable and domain invariant representations in different medical imaging applications such as malaria, diabetic retinopathy, and tuberculosis. We refer to our approach as Incremental Modular Network Synthesis (IMNS), and the resulting CNNs as Incremental Modular Networks (IMNets). Our IMNS approach is to use small network modules that we call SubNets …


Methods For Focal Plane Array Resolution Estimation Using Random Laser Speckle In Non-Paraxial Geometries, Phillip J. Plummer Jun 2022

Methods For Focal Plane Array Resolution Estimation Using Random Laser Speckle In Non-Paraxial Geometries, Phillip J. Plummer

Theses and Dissertations

The infrared (IR) imaging community has a need for direct IR detector evaluation due to the continued demand for small pixel pitch detectors, the emergence of strained-layer-super-lattice devices, and the associated lateral carrier diffusion issues. Conventional laser speckle-based modulation transfer function (MTF) estimation is dependent on Fresnel propagation and a wide-sense-stationary input random process, limiting the use of this approach for lambda (wavelength)-scale IR devices. This dissertation develops two alternative methodologies for speckle-based resolution evaluation of IR focal plane arrays (FPAs). Both techniques are formulated using Rayleigh-Sommerfield electric field propagation, making them valid in the non-paraxial geometries dictated for resolution …


Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers Jun 2022

Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers

Electrical Engineering

This product is a photophoretic trapping system which allows varying focal lengths to test which focal lengths are possible for trapping toner particles. This system establishes that there exists a maximum trapping distance limitation and is the first time the effect of focal length is studied in a photophoretic trapping system. Increasing photophoretic trapping focal length is necessary for improving this technology as a 3D display. The 3D imaging technology is realized by dragging a microscopic (micrometer-scale) particles with a laser beam to trace an image. This technology can display fully colored and high-resolution 3D images visible from almost any …


Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler Jun 2022

Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler

Dissertations and Theses

Photoemission electron microscopy (PEEM) is an imaging method which uses electrons excited through the photoelectric effect to characterize a sample surface with nanometer-level resolution. In PEEM, a high intensity laser excites electrons from the surface of the material and electron optics are used to form an image from the intensity and spatial distribution of the photoemission from the sample. The goal of this research was to study and maximize light confinement, which was accomplished using plasmonic nanostructures. Surface plasmons represent oscillations in the electron density of a material and can occur along the transition interface between a metal and a …


Examination Of Ionization In Cesium Diode Pumped Alkali Lasers With An Ion Chamber Diagnostic, Benjamin Oliker May 2022

Examination Of Ionization In Cesium Diode Pumped Alkali Lasers With An Ion Chamber Diagnostic, Benjamin Oliker

Optical Science and Engineering ETDs

Diode pumped alkali lasers (DPALs) are leading candidates for future high power applications, with many potential utilities for the military, aerospace, communications, and scientific diagnostics. A critical step in their development is measurement and understanding of unwanted ionization processes that occur inside the laser, which decrease efficiency, reduce the usable alkali population, and increase heat load. In this dissertation, direct measurement of the ionization rate of a cesium DPAL gain medium are made for the first time, via application of an ion chamber diagnostic. Results will demonstrate that the rate of ionization is slow compared to pump absorption, with a …


Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip, Jeremiah C. Williams, Hengky Chandrahalim May 2022

Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) pressure sensor includes an optical fiber and a three-dimensional microscopic optical enclosure. The three-dimensional microscopic optical enclosure includes tubular side walls having lateral pleated corrugations and attached to a cleaved tip of the optical fiber to receive a light signal. An optically reflecting end wall is distally engaged to the tubular side walls to enclose a trapped quantity of gas that longitudinally positions the optically reflecting end wall in relation to ambient air pressure, changing a distance traveled by a light signal reflected back through the optical fiber.