Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 58

Full-Text Articles in Optics

Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov Dec 2017

Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

In target-in-the-loop laser beam projection scenarios typical of remote sensing, directed energy, and adaptive optics applications, a transmitted laser beam propagates through an optically inhomogeneous medium toward a target, scatters off the target’s rough surface, and returns back to the transceiver plane. Coherent beam scattering off the randomly rough surface results in strong speckle modulation in the transceiver plane. This speckle modulation has been a long-standing challenge that limits performance of remote sensing, active imaging, and adaptive optics techniques. Using physics-based models of laser beam scattering off a randomly rough surface, we show that received speckle-field spatial and temporal characteristics …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner Dec 2017

Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner

Graduate Theses and Dissertations

This thesis presents the free-space measurements of a periodic metamaterial structure. The metamaterial unit cell consists of two dielectric sheets intersecting at 90 degrees. The dielectric is a polyetherimide-based material 0.001” thick. Each sheet has a copper capacitively-loaded loop (CLL) structure on the front and a cut-wire structure on the back. Foam material is used to support the unit cells. The unit cell repeats 40 times in the x-direction, 58 times in the y-direction and 5 times in the z-direction. The sample measures 12” × 12” × 1” in total. We use a free-space broadband system comprised of a pair …


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Dec 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window.

The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov Nov 2017

Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

A laser beam propagation model that accounts for the joint effect of atmospheric turbulence and refractivity is introduced and evaluated through numerical simulations. In the numerical analysis of laser beam propagation, refractive index inhomogeneities along the atmospheric propagation path were represented by a combination of the turbulence-induced random fluctuations described in the framework of classical Kolmogorov turbulence theory and large-scale refractive index variations caused by the presence of an inverse temperature layer. The results demonstrate that an inverse temperature layer located in the vicinity of a laser beam’s propagation path may strongly impact the laser beam statistical characteristics including the …


Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak Oct 2017

Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak

Faculty Publications

Nanostructured optical materials, for example, metamaterials, have unique spectral, directional, and polarimetric properties. Samples designed and fabricated for infrared (IR) wavelengths have been characterized using broadband instruments to measure specular polarimetric transmittance or reflectance as in ellipsometry or integrated hemisphere transmittance or reflectance. We have developed a wavelength-tunable IR Mueller-matrix (Mm) polarimetric scatterometer which uses tunable external-cavity quantum-cascade lasers (EC-QCLs) to tune onto and off of the narrowband spectral resonances of nanostructured optical materials and performed full polarimeteric and directional evaluation to more fully characterize their behavior. Using a series of EC-QCLs, the instrument is tunable over 4.37-6.54 μm wavelengths …


Synthesis Of Non-Uniformly Correlated Partially Coherent Sources Using A Deformable Mirror, Milo W. Hyde Iv, Santasri Bose-Pillai, Ryan A. Wood Sep 2017

Synthesis Of Non-Uniformly Correlated Partially Coherent Sources Using A Deformable Mirror, Milo W. Hyde Iv, Santasri Bose-Pillai, Ryan A. Wood

Faculty Publications

The near real-time synthesis of a non-uniformly correlated partially coherent source using a low-actuator-count deformable mirror is demonstrated. The statistical optics theory underpinning the synthesis method is reviewed. The experimental results of a non-uniformly correlated source are presented and compared to theoretical predictions. A discussion on how deformable mirror characteristics such as actuator count and pitch affect source generation is also included.


Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo Sep 2017

Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo

Dissertations, Theses, and Capstone Projects

In order to improve future generations of dielectric capacitors a deeper understanding of voltage-induced dielectric breakdown and electrical energy storage limitations is required. This dissertation presents the use of far-field optical second harmonic generation (SHG) polarimetry for probing structural defects and polar domains in linear and nonlinear perovskite dielectric ceramics. We investigated the formation of electric field-induced structural distortions at pristine Fe-doped SrTiO3 (Fe:STO) electrode interfaces, structural defect and strain formation due to oxygen vacancy migration in electrodegraded Fe:STO single crystals, and mixed tetragonal and rhombohedral phase domains in ferroelectric Zr-doped BaTiO3 (BZT) films exhibiting excellent …


On-Chip Training Of Memristor Crossbar Based Multi-Layer Neural Networks, Raqibul Hasan, Tarek M. Taha, Christopher Yakopcic Aug 2017

On-Chip Training Of Memristor Crossbar Based Multi-Layer Neural Networks, Raqibul Hasan, Tarek M. Taha, Christopher Yakopcic

Electrical and Computer Engineering Faculty Publications

Memristor crossbar arrays carry out multiply-add operations in parallel in the analog domain, and so can enable neuromorphic systems with high throughput at low energy and area consumption. On-chip training of these systems have the significant advantage of being able to get around device variability and faults. This paper presents on-chip training circuits for multi-layer neural networks implemented using a single crossbar per layer and two memristors per synapse. Using two memristors per synapse provides double the synaptic weight precision when compared to a design that uses only one memristor per synapse. Proposed on-chip training system utilizes the back propagation …


Nanoscale Tilt Measurement Using A Cyclic Interferometer With Phase Stepping And Multiple Reflections, Tahereh Naderishahab Jul 2017

Nanoscale Tilt Measurement Using A Cyclic Interferometer With Phase Stepping And Multiple Reflections, Tahereh Naderishahab

Graduate Theses - Physics and Optical Engineering

High accuracy tilt or roll angle measurement is required for a variety of engineering and scientific applications. Optical interferometry is normally used because it is non-contact and can measure tilt with a very high degree of accuracy. In this thesis, a cyclic interferometer has been developed with four mirrors to measure tilt angles as small as a few nanoradians. To measure the phase, a novel and simple method of phase shift by polarization was developed to enhance measurement sensitivity and accuracy. Since the cyclic interferometer is insensitive to external vibrations and turbulences, polarization phase step was accomplished with relative ease. …


Real-Time Camera Tracking System Using Optical Flow Feature Points, Daniel D. Doyle, Alan L. Jennings, Jonathan T. Black Jul 2017

Real-Time Camera Tracking System Using Optical Flow Feature Points, Daniel D. Doyle, Alan L. Jennings, Jonathan T. Black

AFIT Patents

A new apparatus and method for tracking a moving object with a moving camera provides a real-time, narrow field-of-view, high resolution and on target image by combining commanded motion with an optical flow algorithm for deriving motion and classifying background. Commanded motion means that movement of the pan, tilt and zoom (PTZ) unit is “commanded” by a computer, instead of being observed by the camera, so that the pan, tilt and zoom parameters are known, as opposed to having to be determined, significantly reducing the computational requirements for tracking a moving object. The present invention provides a single camera pan …


High Precision Refractive Index Measurement Techniques Applied To The Analysis Of Neutron Damage And Effects In Caf2 Crystals, Joseph P. Morris Ph.D. Jul 2017

High Precision Refractive Index Measurement Techniques Applied To The Analysis Of Neutron Damage And Effects In Caf2 Crystals, Joseph P. Morris Ph.D.

Nuclear Engineering ETDs

Neutron irradiation damages material by atomic displacements. The majority of these damage regions are microscopic and difficult to study, though they can cause a change in density and thus a change in refractive index in transparent materials. This work utilized CaF2 crystals to track refractive index change based on neutron radiation dose. High precision refractive index measurements were performed utilizing a nested-cavity mode-locked laser where the CaF2 crystal acted as a Fabry-Pérot Etalon (FPE). By comparing the repetition rate of the cavity and the repetition rate of the FPE, refractive index change was determined. Following several irradiation experiments, …


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore Jun 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Russell C. Hardie

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a …


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Jun 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Russell C. Hardie

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore Jun 2017

Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore

Russell C. Hardie

We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames …


Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai Jun 2017

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai

Russell C. Hardie

We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation …


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Jun 2017

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Russell C. Hardie

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


Multispectral Identification Array, Zachary D. Eagan Jun 2017

Multispectral Identification Array, Zachary D. Eagan

Computer Engineering

The Multispectral Identification Array is a device for taking full image spectroscopy data via the illumination of a subject with sixty-four unique spectra. The array combines images under the illumination spectra to produce an approximate reflectance graph for every pixel in a scene. Acquisition of an entire spectrum allows the array to differentiate objects based on surface material. Spectral graphs produced are highly approximate and should not be used to determine material properties, however the output is sufficiently consistent to allow differentiation and identification of previously sampled subjects. While not sufficiently advanced for use as a replacement to spectroscopy the …


Agenda: Second International Workshop On Thin Films For Electronics, Electro-Optics, Energy And Sensors (Tfe3s), University Of Dayton Research Institute Jun 2017

Agenda: Second International Workshop On Thin Films For Electronics, Electro-Optics, Energy And Sensors (Tfe3s), University Of Dayton Research Institute

Electro-Optics and Photonics Faculty Publications

University of Dayton’s Center of Excellence for Thin Film Research and Surface Engineering (CETRASE) is delighted to organize its second international workshop at the University of Dayton’s Research Institute (UDRI) campus in Dayton, Ohio, USA. The purpose of the new workshop is to exchange technical knowledge and boost technical and educational collaboration activities within the thin film research community through our CETRASE and the UDRI.


Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks May 2017

Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks

Faculty Publications

Phase modulation methods for imaging around corners with reflectively scattered light required illumination of the occluded scene with a light source either in the scene or with direct line of sight to the scene. The RM (reflection matrix) allows control and refocusing of light after reflection, which could provide a means of illuminating an occluded scene without access or line of sight. Two optical arrangements, one focal-plane, the other an imaging system, were used to measure the RM of five different rough-surface reflectors. Intensity enhancement values of up to 24 were achieved. Surface roughness, correlation length, and slope were examined …


Stereoscopic 3-D Presentation For Air Traffic Control Digital Radar Displays, Jason G. Russi, Brent T. Langhals, Michael E. Miller, Eric L. Heft May 2017

Stereoscopic 3-D Presentation For Air Traffic Control Digital Radar Displays, Jason G. Russi, Brent T. Langhals, Michael E. Miller, Eric L. Heft

AFIT Patents

An apparatus and method of presenting air traffic data to an air traffic controller are provided. Air traffic data including a two dimensional spatial location and altitude for a plurality of aircraft is received. A disparity value is determined based on the altitude for each aircraft of the plurality of aircraft. Left and right eye images are generated of the plurality of aircraft where at least one of the left and right eye images is based on the determined disparity value. The left and right eye images are simultaneously displayed to the air traffic controller on a display. The simultaneously …


Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding May 2017

Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding

Honors Projects

This thesis begins with a foundational section on quantum optics. The single-photon detectors used in the first chapter were obtained through the Advanced Laboratory Physics Association (ALPhA), which brokered reduced cost for educational use, and the aim of the single-photon work presented in Chapter 1 is to develop modules for use in Illinois Wesleyan's instructional labs beyond the first year of university. Along with the American Association of Physics Teachers, ALPhA encourages capstone-level work, such as Chapter 1 of this honors thesis, which is explicitly designed to play the role of passing on, to a next generation of physics majors, …


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore May 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Electrical and Computer Engineering Faculty Publications

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster May 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Electrical and Computer Engineering Faculty Publications

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin May 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Graduate Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was …


Measuring Molecular Orientation And Rotational Mobility Using A Tri-Spot Point Spread Function, Oumeng Zhang May 2017

Measuring Molecular Orientation And Rotational Mobility Using A Tri-Spot Point Spread Function, Oumeng Zhang

McKelvey School of Engineering Theses & Dissertations

Single molecules have become a powerful tool for biophysicists since they were first optically detected 28 years ago. Understanding molecular orientation can not only improve the accuracy of single-molecule localization, but it can also provide insight into biochemical behaviors at the nanoscale. In this thesis, I present a method to measure the molecular orientation and rotational mobility of single-molecule emitters by designing and implementing a tri-spot point spread function. The point spread function is designed so that it is capable of measuring all degrees of freedom related to molecular orientation and rotational mobility. Its design is optimized by maximizing the …


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear frequency …


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Graduate Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted …