Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 87

Full-Text Articles in Physics

Application Of Phase Shifting Electronic Speckle Pattern Interferometry In Studies Of Photoinduced Shrinkage Of Photopolymer Layers, Mohesh Moothanchery, Viswanath Bavigadda, Manojit Pramanik, Vincent Toal, Izabela Naydenova Jan 2017

Application Of Phase Shifting Electronic Speckle Pattern Interferometry In Studies Of Photoinduced Shrinkage Of Photopolymer Layers, Mohesh Moothanchery, Viswanath Bavigadda, Manojit Pramanik, Vincent Toal, Izabela Naydenova

Articles

Photoinduced shrinkage occurring in photopolymer layers during holographic recording was determined by Phase Shifting Electronic Speckle Pattern Interferometry. Phase maps were calculated from the changes in intensity at each pixel due to the phase differences introduced between object and reference beams. Shrinkage was then obtained from the changes in phase as recording proceeded. The technique allows for whole field measurement of the dimensional changes in photopolymers during holographic recording.


N-Isopropylacrylamide-Based Photopolymer For Holographic Recording Of Thermosensitive Transmission And Reflection Grating, Tatsiana Mikulchyk, Suzanne Martin, Izabela Naydenova Jan 2017

N-Isopropylacrylamide-Based Photopolymer For Holographic Recording Of Thermosensitive Transmission And Reflection Grating, Tatsiana Mikulchyk, Suzanne Martin, Izabela Naydenova

Articles

In recent years, functionalized photopolymer systems capable of holographic recording are in great demand due to their potential use in the development of holographic sensors. This work presents a newly developed Nisopropylacrylamide(NIPA)-based photopolymer for holographic recording in reflection and transmission modes. The optimized composition of the material is found to reach refractive index modulation of up to 5  10-3 and 1.6  10-3 after recording in transmission and reflection mode, respectively. In addition to fulfilling the requirements for holographic recording materials, the NIPA-based photopolymer is sensitive to temperature and has lower toxicity than acrylamide-based photopolymers. Possible application of the …


Humidity And Temperature Induced Changes In The Diffraction Efficiency And The Bragg Angle Of Slanted Photopolymer-Based Holographic Gratings, Tatsiana Mikulchyk, James Walshe, Dervil Cody, Suzanne Martin, Izabela Naydenova Jan 2017

Humidity And Temperature Induced Changes In The Diffraction Efficiency And The Bragg Angle Of Slanted Photopolymer-Based Holographic Gratings, Tatsiana Mikulchyk, James Walshe, Dervil Cody, Suzanne Martin, Izabela Naydenova

Articles

This work explores the humidity and temperature response of volume phase slanted gratings recorded in photopolymers with varied chemical composition. Acrylamide and diacetone acrylamide were used as monomers and triethanolamine and N-phenylglycine were used as photoinitiators. The study demonstrates that the response of photopolymer-based holographic gratings to relative humidity (RH) and temperature (T) can be tuned by alteration of the photopolymer composition.Humidity and temperature response of the holograms has been characterized by recording Bragg selectivity curves of transmission gratings and by monitoring the position of the maximum intensity in the spectral response of reflection gratings. Investigation of the humidity response …


Development And Characterisation Of A Bath-Based Vertical Blackbody Cavity Calibration Source For The Range −30 °C To 150 °C, Sam Boles, Igor Pušnik, Dubhaltach Mac Lochlainn, David Fleming, Izabela Naydenova, Suzanne Martin Jan 2017

Development And Characterisation Of A Bath-Based Vertical Blackbody Cavity Calibration Source For The Range −30 °C To 150 °C, Sam Boles, Igor Pušnik, Dubhaltach Mac Lochlainn, David Fleming, Izabela Naydenova, Suzanne Martin

Articles

Industrial use of Radiation Thermometers (RTs) is becoming increasingly common due to the perceived advantages and wide market availability. Blackbody Cavity Radiation Sources (BCRSs) are typically used for calibration of these instruments, and these cavities are oriented horizontally in most cases. For BCRSs based in thermal baths, this necessitates the use of custom-built baths with side openings. This paper presents a unique design of vertical bath-based BCRS that may be immersed in conventional calibration baths without modifications to the baths. The method, results, and analysis of an international comparison comparing this vertical BCRS, standard horizontal BCRSs, and a previous iteration …


Theoretical Modeling Of The Effect Of Polymer Chain Immobilization Rates On Holographic Recording In Photopolymers, Dana Mackey, Paul O'Reilly, Izabela Naydenova Apr 2016

Theoretical Modeling Of The Effect Of Polymer Chain Immobilization Rates On Holographic Recording In Photopolymers, Dana Mackey, Paul O'Reilly, Izabela Naydenova

Articles

This paper introduces an improved mathematical model for holographic grating formation in an acrylamide-based photopolymer, which consists of partial differential equations derived from physical laws. The model is based on the two-way diffusion theory of \cite{izabela}, which assumes short polymer chains are free to diffuse, and generalizes a similar model presented in \cite{josab} by introducing an immobilization rate governed by chain growth and cross-linking. Numerical simulations were carried out in order to investigate the behaviour of the photopolymer system for short and long exposures, with particular emphasis on the effect of recording parameters (such as illumination frequency and intensity), as …


Determination Of The Polymerisation Rate Of A Low-Toxicity Diacetone Acrylamide-Based Holographic Photopolymer Using Raman Spectroscopy, Dervil Cody, Emilia Mihaylova, Luke O'Neill, Izabela Naydenova Oct 2015

Determination Of The Polymerisation Rate Of A Low-Toxicity Diacetone Acrylamide-Based Holographic Photopolymer Using Raman Spectroscopy, Dervil Cody, Emilia Mihaylova, Luke O'Neill, Izabela Naydenova

Articles

The polymerisation rate of a low-toxicity Diacetone Acrylamide (DA)-based photopolymer has been measured for the first time using Raman spectroscopy. A value for the polymerisation rate of 0.020 s−1 has been obtained for the DA photopolymer by modelling the polymerisation reaction dynamics as a stretched exponential or Kohlrausch decay function. This is significantly lower than the polymerisation rate of 0.100 s−1 measured for the well known Acrylamide (AA)-based photopolymer composition. The effect of the additive glycerol on the polymerisation rate of the DA-based photopolymer has also been investigated. The inclusion of glycerol is observed to increase the rate …


Spectroscopic Characterization Of A Radio-Frequency Argon Plasma Jet Discharge In Ambient Air, Patrick Cullen, Vladimir Milosavljevic Jun 2015

Spectroscopic Characterization Of A Radio-Frequency Argon Plasma Jet Discharge In Ambient Air, Patrick Cullen, Vladimir Milosavljevic

Articles

This study includes a detailed experimental investigation of the spatial and temporal spectroscopic emission of an argon plasma jet discharge. The study is carried out in ambient air and quenching by inflowing air species is considered. The optical emission spectroscopy of neutral atomic spectral lines and molecular bands, over a range of plasma process parameters, is investigated. Wavelength-resolved argon optical emission profiles are used to monitor the electron energy distribution function and the density of argon metastable atoms. The experimental data indicates that the argon flow rate, in a confined open-air plasma discharge, limits the impact of molecular oxygen in …


Multivariate Statistical Methodologies Applied In Biomedical Raman Spectroscopy: Assessing The Validity Of Partial Least Squares Regression Using Simulated Model Datasets., Mark Keating Apr 2015

Multivariate Statistical Methodologies Applied In Biomedical Raman Spectroscopy: Assessing The Validity Of Partial Least Squares Regression Using Simulated Model Datasets., Mark Keating

Articles

Raman spectroscopy is fast becoming a valuable analytical tool in a number of biomedical scenarios, most notably disease diagnostics. Importantly, the technique has also shown increasing promise in the assessment of drug interactions on a cellular and subcellular level, particularly when coupled with multivariate statistical analysis. However, an important consideration, both with Raman spectroscopy and the associated statistical methodologies, is the accuracy of these techniques and more specifically the sensitivities which can be achieved and ultimately the limits of detection of the various methods. The purpose of this study is thus the construction of a model simulated data set with …


Diffractive Optical Elements With A Large Angle Of Operation Recorded In Acrylamide Based Photopolymer On Flexible Substrates, Hoda Akbari, Izabela Naydenova, Lina Persechini, Sean Garner, Pat Cimo, Suzanne Martin Dec 2014

Diffractive Optical Elements With A Large Angle Of Operation Recorded In Acrylamide Based Photopolymer On Flexible Substrates, Hoda Akbari, Izabela Naydenova, Lina Persechini, Sean Garner, Pat Cimo, Suzanne Martin

Articles

A holographic device characterised by a large angular range of operation is under development. The aim of this study is to increase the angular working range of the diffractive lens by stacking three layers of high efficiency optical elements on top of each other so that light is collected (and focussed) from a broader range of angles. The angular range of each individual lens element is important, and work has already been done in an acrylamide-based photosensitive polymer to broaden the angular range of individual elements using holographic recording at a low spatial frequency.This paper reports new results on the …


Microfiber Coupler Based Label-Free Immunosensor, Lin Bo, Christy Charlton O'Mahony, Yuliya Semenova, Niamh Gilmartin, Pengfei Wang, Gerald Farrell Apr 2014

Microfiber Coupler Based Label-Free Immunosensor, Lin Bo, Christy Charlton O'Mahony, Yuliya Semenova, Niamh Gilmartin, Pengfei Wang, Gerald Farrell

Articles

Optical microfibers and related structures which incorporate large evanescent field and minimal size offer new opportunities for biosensing applications. In this paper we report the development of an immunosensor based on a tapered microfiber coupler embedded in a low refractive index polymer. Biomolecules adsorbed on the microfiber coupler surface modify the surrounding refractive index. By immobilizing antigens on the surface of the sensing area, the microfiber coupler was able to operate as a label-free immunosensor to detect specific antibodies. We experimentally demonstrated for the first time the sensing ability of this sensor using a fibrinogen antigen-antibody pair. By monitoring the …


Using Acrylamide Based Photopolymers For Fabrication Of Holographic Optical Elements In Solar Energy Applications, Hoda Akbari, Izabela Naydenova, Suzanne Martin Feb 2014

Using Acrylamide Based Photopolymers For Fabrication Of Holographic Optical Elements In Solar Energy Applications, Hoda Akbari, Izabela Naydenova, Suzanne Martin

Articles

A holographic device is under development that aims to improve light collection in solar cells. The aim is to explore the potential of using photopolymer Holographic Optical Elements (HOE) to collect light from a moving source, such as the sun, and re-direct it for concentration by a holographic lens.. A working range of 45 degrees is targeted for such a device to be useful in solar applications without tracking. A photopolymer HOE is capable of efficiently re-directing light, but the angular selectivity of a single grating is usually of the order of one degree at the thicknesses required for high …


A Photonic Crystal Fiber Based Polarimetric Sensor For Cure Monitoring Of Magneto-Rheological Smart Composite Material, Manjusha Ramakrishnan, Ginu Rajan, Yuliya Semenova, Y. Zhou, Stephen Jerrams, Gerald Farrell Jan 2014

A Photonic Crystal Fiber Based Polarimetric Sensor For Cure Monitoring Of Magneto-Rheological Smart Composite Material, Manjusha Ramakrishnan, Ginu Rajan, Yuliya Semenova, Y. Zhou, Stephen Jerrams, Gerald Farrell

Articles

A buffer stripped high birefringent photonic crystal fibre based polarimetric sensor is developed for monitoring the curing process of magnetorheological elastomer (MRE) smart composite material. Using the developed sensor, different phases of the MRE curing process are clearly visible from the phase shift variation of the embedded polarisation maintaining photonic crystal fibre (PM-PCF) sensor. During the curing process, the buffer stripped PM-PCF exhibits a stress/strain induced phase shift variation from 0 to 1.98 rad. This is a significantly large phase change, which can be used to very clearly identify the different stages in the curing process. For comparison, a fibre …


Experimental Study And Analysis Of A Polymer Fiber Bragg Grating Embedded In A Composite Material, Ginu Rajan, Manjusha Ramakrishnan, Yuliya Semenova, Eliathamby Ambikairajah, Gerald Farrell, Gang-Ding Peng Jan 2014

Experimental Study And Analysis Of A Polymer Fiber Bragg Grating Embedded In A Composite Material, Ginu Rajan, Manjusha Ramakrishnan, Yuliya Semenova, Eliathamby Ambikairajah, Gerald Farrell, Gang-Ding Peng

Articles

The characteristics of polymer fiber Bragg gratings (FBGs) embedded in composite materials are studied in this paper and are compared with characteristics of their silica counterparts. A polymer FBG of 10 mm length which exhibits a peak reflected wavelength circa 1530 nm is fabricated and characterized for this purpose. A silica FBG with a peak reflected wavelength circa 1553 nm is also embedded in the composite material for a comparison study. The fabricated composite material sample with embedded sensors is subjected to temperature and strain changes and the corresponding effects on the embedded polymer and silica FBGs are studied. The …


Suppression Of Raman Soliton Self-Frequency Shift In Photonic Cystal Fibers With Tellurite Subwavelength Core, Shua Wei, Jinhui Yuan, Chongxiu Yu, Sha Li, Boyuan Jin, Xiaoming Hu, Gerald Farrell, Qiang Wu Jan 2014

Suppression Of Raman Soliton Self-Frequency Shift In Photonic Cystal Fibers With Tellurite Subwavelength Core, Shua Wei, Jinhui Yuan, Chongxiu Yu, Sha Li, Boyuan Jin, Xiaoming Hu, Gerald Farrell, Qiang Wu

Articles

A new nonlinear evolution equation including the vector nature of the electromagnetic field and the frequency variation of the mode profile is derived. A kind of new nonlinearity is demonstrated. Its magnitude is strongly dependent on the waveguide geometrical parameters, which will lead to a suppression of the Raman soliton self-frequency shift in a photonic crystal fiber with a tellurite subwavelength core. Our results can be supported by the detailed numerical simulations


Investigation Of The Sensitivity To Humidity Of An Acrylamide-Based Photopolymer Containing N-Phenylglycine As A Photoinitiator, Tatsiana Mikulchyk, Suzanne Martin, Izabela Naydenova Jan 2014

Investigation Of The Sensitivity To Humidity Of An Acrylamide-Based Photopolymer Containing N-Phenylglycine As A Photoinitiator, Tatsiana Mikulchyk, Suzanne Martin, Izabela Naydenova

Articles

Sensitivity of holographic recording materials to the relative humidity (RH) of the environment often restricts their use in fabrication of holographic optical elements and other applications. It is important to develop materials with little or no sensitivity to humidity. In this paper the humidity response of transmission gratings recorded in an acrylamide-based photopolymer containing N-phenylglycine (NPG) as a photoinitiator is studied at RH = 20 – 90 %. The hologram is found to be completely insensitive to humidity at RH below 70 % and its diffraction efficiency remains constant. A decrease in diffraction efficiency is observed at RH = 80 …


Photonic Crystal Fiber Half-Taper Probe Based Refractometer, Pengfei Wang, Ming Ding, Lin Bo, Chunying Guan, Yuliya Semenova, Weimin Sun, Libo Yuan, Gilberto Brambilla, Gerald Farrell Jan 2014

Photonic Crystal Fiber Half-Taper Probe Based Refractometer, Pengfei Wang, Ming Ding, Lin Bo, Chunying Guan, Yuliya Semenova, Weimin Sun, Libo Yuan, Gilberto Brambilla, Gerald Farrell

Articles

A compact singlemode - photonic crystal fibre - singlemode fibre tip (SPST) refractive index sensor is demonstrated in this paper. A CO2 laser cleaving technique is utilsed to provide a clean-cut fibre tip which is then coated by a layer of gold to increase reflection. An average sensitivity of 39.1 nm/RIU and a resolvable index change of 2.56×10-4 are obtained experimentally with a ~3.2 µm diameter SPST. The temperature dependence of this fiber optic sensor probe is presented. The proposed SPST refractometer is also significantly less sensitive to temperature and an experimental demonstration of this reduced sensitivity is …


Mechanism Of Multiple Grating Formation In High-Energy Recording Of Holographic Sensors, Ali K. Yetisen, Yunuen Montelongo, Nicholas M. Farandos, Izabela Naydenova, Christopher R. Lowe, Seok Hyun Yun Jan 2014

Mechanism Of Multiple Grating Formation In High-Energy Recording Of Holographic Sensors, Ali K. Yetisen, Yunuen Montelongo, Nicholas M. Farandos, Izabela Naydenova, Christopher R. Lowe, Seok Hyun Yun

Articles

We report numerical analyses of Bragg diffraction by Denisyuk reflection holograms recorded by a high-energy pulsed laser. An intensity threshold must be passed to pattern a multilayer reflection and transmission hologram, which exhibits a nonlinear fringe structure. Numerical evaluations are provided for the laser light intensity, readout diffraction offset angle, transmission of the layer, and thickness of the polymer matrix during hologram recording. A non-sinusoidal surface pattern is formed at the top of the multilayer structure, and its effect on the diffraction properties of the structure becomes significant when the recording tilt angle is increased. Experimental results show that the …


Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures And Their Applications, Ali K. Yetisen, Izabela Naydenova, Fernando Da Cruz Vasconcellos, Jeffrey Blyth, Christopher R. R. Lowe Jan 2014

Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures And Their Applications, Ali K. Yetisen, Izabela Naydenova, Fernando Da Cruz Vasconcellos, Jeffrey Blyth, Christopher R. R. Lowe

Articles

Holographic sensors are analytical devices that systematically diffract narrow-band light in the ultraviolet to near-infrared range for application in the detection and quantification of analytes and/or physical parameters. They can be functionalized with analyte-responsive materials to construct highly sensitive optical sensors for use in testing, where a visual readout, fast turnaround time, and reversibility are needed. Holography allows fabrication of disposable sensors that are lightweight for miniaturization and multiplexing purposes.3 Holographic sensors offer three capabilities on a single analytical device: (i) label-free analyte-responsive polymer, (ii) real-time, reversible quantification of the external stimuli, and (iii) three-dimensional visual image display.


Humidity And Temperature Effect On Properties Of Transmission Gratings Recorded In Pva/Aa-Based Photopolymer Layers, Tatsiana Mikulchyk, Suzanne Martin, Izabela Naydenova Oct 2013

Humidity And Temperature Effect On Properties Of Transmission Gratings Recorded In Pva/Aa-Based Photopolymer Layers, Tatsiana Mikulchyk, Suzanne Martin, Izabela Naydenova

Articles

This paper explores the effects of humidity on gratings recorded in a polyvinylalcohol–acrylamide photopolymer medium. Investigation of the behaviour of transmission gratings exposed to high humidity is of significant interest for two reasons, firstly because the grating's sensitivity to humidity can be exploited for the development of irreversible humidity indicators, secondly because too much sensitivity to humidity can limit the use of these materials in applications where an environmentally stable hologram is needed. In this paper we focus on the effect of high humidity on the properties of volume phase transmission gratings recorded in PVA/AA photopolymer layers in the temperature …


Raman Spectroscopic Analysis Of Human Skin Tissue Sections Ex-Vivo: Evaluation Of The Effects Of Tissue Processing And Dewaxing, Syed Mehmood Ali, Franck Bonnier, Ali Tfayli, Helen Lambkin, Kathleen Flynn, Vincent Mcdonagh, Claragh Healy, Thomas Lee, Fiona Lyng, Hugh Byrne Jun 2013

Raman Spectroscopic Analysis Of Human Skin Tissue Sections Ex-Vivo: Evaluation Of The Effects Of Tissue Processing And Dewaxing, Syed Mehmood Ali, Franck Bonnier, Ali Tfayli, Helen Lambkin, Kathleen Flynn, Vincent Mcdonagh, Claragh Healy, Thomas Lee, Fiona Lyng, Hugh Byrne

Articles

Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to elucidate the biochemical structure of human skin tissue sections, and the effects of tissue processing. Both hand and thigh sections of human cadavers were analysed in their unprocessed and formalin fixed paraffin processed (FFPP) and subsequently dewaxed forms. In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum, intermediate underlying epithelium and dermal layers for sections from both anatomical sites. The stratum corneum is seen to be relatively rich in lipidic content; the spectrum of the subjacent layers is strongly influenced by the presence of melanin, while that …


Spectral Cross Correlation As A Supervised Approach For The Analysis Of Complex Raman Datasets: The Case Of Nanoparticles In Biological Cells, Mark Keating, Franck Bonnier, Hugh Byrne Oct 2012

Spectral Cross Correlation As A Supervised Approach For The Analysis Of Complex Raman Datasets: The Case Of Nanoparticles In Biological Cells, Mark Keating, Franck Bonnier, Hugh Byrne

Articles

Spectral Cross-correlation is introduced as a methodology to identify the presence and subcellular distribution of nanoparticles in cells. Raman microscopy is employed to spectroscopically image biological cells previously exposed to polystyrene nanoparticles, as a model for the study of nano-bio interactions. The limitations of previously deployed strategies of K-means clustering analysis and principal component analysis are discussed and a novel methodology of Spectral Cross Correlation Analysis is introduced and compared with the performance of Classical Least Squares Analysis, in both unsupervised and supervised modes. The previous study demonstrated the feasibility of using Raman spectroscopy to map cells and identify polystyrene …


Photonic Crystal Fiber Interferometer For Dew Detection, Jinesh Mathew, Yuliya Semenova, Gerald Farrell Jan 2012

Photonic Crystal Fiber Interferometer For Dew Detection, Jinesh Mathew, Yuliya Semenova, Gerald Farrell

Articles

A novel method for dew detection based on photonic crystal fiber (PCF) interferometer that operates in reflection mode is presented in this paper. The fabrication of the sensor head is simple since it only involves cleaving and fusion splicing. The sensor shows good sensitivity to dew formation with a large wavelength peak shift of the interference pattern at the onset of dew formation. The device’s response to ambient humidity and temperature are also studied and reported in this paper. From our experiment it is also concluded that by attaching a thermoelectric cooler with temperature feedback, the sensor head demonstrated can …


New Non-Toxic Holographic Photopolymer Material, Dervil Cody, Izabela Naydenova, Emilia Mihaylova Jan 2012

New Non-Toxic Holographic Photopolymer Material, Dervil Cody, Izabela Naydenova, Emilia Mihaylova

Articles

There is an increasing need for environmentally friendly holographic recording materials which can be produced in bulk with little risk to the health of workers in manufacturing. This is why the development of non-toxic photopolymer materials is crucial, and has attracted attention in recent years. Composition and preliminary characterization of a new non-toxic photopolymer material are presented. It operates well at a range of spatial frequencies, and achieves diffraction efficiencies and refractive index modulation comparable to the known acrylamide-based photopolymers.


Nanozeolites Doped Photopolymer Layers With Reduced Shrinkage, Mohesh Moothanchery, Izabela Naydenova, Svetlana Mintova, Vincent Toal Dec 2011

Nanozeolites Doped Photopolymer Layers With Reduced Shrinkage, Mohesh Moothanchery, Izabela Naydenova, Svetlana Mintova, Vincent Toal

Articles

An acrylamide based photopolymer doped with pure silica MFI-type zeolite (silicalite-1) nanoparticles has been characterized for holographic recording purposes. The concentrations of the silicalite-1 nanoparticles in the photopolymer layers were 1, 2.5, 5 and 7.5 wt.%. The inclusion of silicalite-1 nanoparticle in the photopolymer has resulted in an increase of the diffraction efficiency by up to 40%, and decrease of the shrinkage from 1.32% to 0.57%. The best results were obtained in layers doped with 5 wt.% silicalite-1 nanoparticles.


Enhanced Quantum Dot Emission For Luminescent Solar Concentrators Using Plasmonic Interaction, Subhash Chandra, Manus Kennedy, John Doran, Sarah Mccormack, A. J. Chatten Nov 2011

Enhanced Quantum Dot Emission For Luminescent Solar Concentrators Using Plasmonic Interaction, Subhash Chandra, Manus Kennedy, John Doran, Sarah Mccormack, A. J. Chatten

Articles

Plasmonic excitation enhanced fluorescence of CdSe/ZnS core-shell quantum dots (QDs) in the presence of Au nanoparticles (NPs) has been studied for application in quantum dot solar concentrator (QDSC) devices. We observe that there is an optimal concentration of Au NPs that gives a maximum 53% fluorescence emission enhancement for the particular QD/Au NP composite studied. The optimal concentration depends on the coupling and spacing between neighboring QDs and Au NPs. We show the continuous transition from fluorescence enhancement to quenching, depending on Au NP concentration. The locally enhanced electromagnetic field induced by the surface plasmon resonance in the Au NPs …


Holographic Recording In Corona Charged Acrylamide-Based Mfi-Zeolite Photopolymer, Temenujka Yovcheva, Izabela Naydenova, Simeon Sainov, Vincent Toal, Svetlana Mintova Nov 2011

Holographic Recording In Corona Charged Acrylamide-Based Mfi-Zeolite Photopolymer, Temenujka Yovcheva, Izabela Naydenova, Simeon Sainov, Vincent Toal, Svetlana Mintova

Articles

The influence of corona charging on holographic recording in acrylamide-based photopolymer nanocomposite containing MFI zeolite nanoparticles has been studied. The holographic recording was carried out in two different geometries —transmission grating recording and total internal reflection grating recording. During the recording process, the layers were charged in a corona field. It was observed that independently of the corona polarity, in the case of transmission geometry of recording, the corona charging led to a decrease in the diffraction efficiency (DE) of the grating. In the case of the total internal reflection grating, the DE increased in the corona field presence.


Study Of The Shrinkage Caused By Holographic Grating Formation In Acrylamide Based Photopolymer Film, Mohesh Moothanchery, Izabela Naydenova, Vincent Toal Jun 2011

Study Of The Shrinkage Caused By Holographic Grating Formation In Acrylamide Based Photopolymer Film, Mohesh Moothanchery, Izabela Naydenova, Vincent Toal

Articles

We study the shrinkage in acrylamide based photopolymer by measuring the Bragg detuning of transmission diffraction gratings recorded at different slant angles and at different intensities for a range of spatial frequencies. Transmission diffraction gratings of spatial frequencies 500, 1000, 1500 and 2000 lines/mm were recorded in an acrylamide based photopolymer film having 60 ± 5 μm thickness. The grating thickness and the final slant angles were obtained from the angular Bragg selectivity curve and hence the shrinkage caused by holographic recording was calculated. The shrinkage of the material was evaluated for three different recording intensities 1, 5 and 10 …


Studies Of Shrinkage As A Result Of Holographic Recording In Acrylamide Based Photopolymer Film, Mohesh Moothanchery, Izabela Naydenova, Vincent Toal May 2011

Studies Of Shrinkage As A Result Of Holographic Recording In Acrylamide Based Photopolymer Film, Mohesh Moothanchery, Izabela Naydenova, Vincent Toal

Articles

We studied the shrinkage in acrylamide-basedphotopolymer by measuring the Bragg detuning of transmission diffraction gratings recorded at different slant angles and at different intensities. Transmission diffraction gratings of spatial frequency 1000 lines/mm were recorded in an acrylamide-based photopolymer film having 60 ± 5 μm thickness. We have obtained the grating thickness and the final slant angles from the Bragg curve and hence calculated the shrinkage caused by holographic recording. The shrinkage of the material was evaluated for three different recording intensities 1, 5 and 10 mW/cm2, while the total exposure energy was kept constant at 80 mJ/cm2. From the experimental …


In-Plane Sensitive Electronic Speckle Pattern Interferometer Using A Diffractive Holographic Optical Element, Raghavendra Jallapuram, Con Healy, Emilia Mihaylova, Vincent Toal Jan 2011

In-Plane Sensitive Electronic Speckle Pattern Interferometer Using A Diffractive Holographic Optical Element, Raghavendra Jallapuram, Con Healy, Emilia Mihaylova, Vincent Toal

Articles

We describe a student project in electronic speckle pattern interferometry. The project includes holographic recording of diffraction gratings in thick, self-processing photopolymer layers made from off-the-shelf chemicals. The gratings are employed in a simple electronic speckle pattern interferometer to measure in-plane rotation.


Photopolymerizable Nanocomposites For Holographic Recording And Sensor Application, Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, Vincent Toal Jan 2010

Photopolymerizable Nanocomposites For Holographic Recording And Sensor Application, Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, Vincent Toal

Articles

Novel nanocomposites consisting of a water soluble acrylamide–based photopolymer and colloidal zeolite nanoparticles of zeolite Beta and zeolite A were prepared. The interactions between the photopolymer components and zeolite nanoparticles in the photopolymerizable nanocomposites were characterized for the first time by 13C NMR and Visible spectroscopy. It was found that the zeolite Beta nanoparticles (up to 5% wt.) behave as a non-inert additive, resulting in an effective increase in layer thickness that causes doubling of the diffraction efficiency of the nanocomposite in comparison to that of the undoped photopolymer. On the other hand, the nanocomposite containing zeolite A nanoparticles showed …