Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd May 2022

Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd

Chancellor’s Honors Program Projects

No abstract provided.


Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee Apr 2022

Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee

University Scholar Projects

Misregulation of post-translational modifications of microtubule-associated protein tau is implicated in several neurodegenerative diseases including Alzheimer’s disease. Hyperphosphorylation of tau promotes aggregation of tau monomers into filaments which are common in tau-associated pathologies. Therefore, tau is a promising target for therapeutics and diagnostics. Recently, high-affinity, high-specificity single-chain variable fragment (scFv) antibodies against pThr-231 tau were generated and the most promising variant (scFv 3.24) displayed 20-fold increased binding affinity to pThr-231 tau compared to the wild-type. The scFv 3.24 variant contained five point mutations, and intriguingly none were in the tau binding site. The increased affinity was hypothesized to occur due …


Structural Characterization And Selective Drug Targeting Of Higher-Order Dna G-Quadruplex Systems., Robert Chandos Monsen Dec 2020

Structural Characterization And Selective Drug Targeting Of Higher-Order Dna G-Quadruplex Systems., Robert Chandos Monsen

Electronic Theses and Dissertations

There is now substantial evidence that guanine-rich regions of DNA form non-B DNA structures known as G-quadruplexes in cells. G-quadruplexes (G4s) are tetraplex DNA structures that form amid four runs of guanines which are stabilized via Hoogsteen hydrogen bonding to form stacked tetrads. DNA G4s have roles in key genomic functions such as regulating gene expression, replication, and telomere homeostasis. Because of their apparent role in disease, G4s are now viewed as important molecular targets for anticancer therapeutics. To date, the structures of many important G4 systems have been solved by NMR or X-ray crystallographic techniques. Small molecules developed to …


Modeling The Binding Of Neurotransmitter Transporter Inhibitors With Molecular Dynamics And Free Energy Calculations, Bernandie Jean Jan 2017

Modeling The Binding Of Neurotransmitter Transporter Inhibitors With Molecular Dynamics And Free Energy Calculations, Bernandie Jean

Electronic Theses and Dissertations

The monoamine transporter (MAT) proteins responsible for the reuptake of the neurotransmitter substrates, dopamine, serotonin, and norepinephrine, are drug targets for the treatment of psychiatric disorders including depression, anxiety, and attention deficit hyperactivity disorder. Small molecules that inhibit these proteins can serve as useful therapeutic agents. However, some dopamine transporter (DAT) inhibitors, such as cocaine and methamphetamine, are highly addictive and abusable. Efforts have been made to develop small molecules that will inhibit the transporters and elucidate specific binding site interactions. This work provides knowledge of molecular interactions associated with MAT inhibitors by offering an atomistic perspective that can guide …


Computational Investigations Into The Molecular Underpinnings Of Eyesight Signaling Pathways, Shaan Kamal May 2016

Computational Investigations Into The Molecular Underpinnings Of Eyesight Signaling Pathways, Shaan Kamal

University Scholar Projects

Phosphodiesterase 6 (PDE6) is a critical enzyme in the eyesight-signaling pathway. When activated, PDE6 hydrolyzes cGMP to GMP, which deactivates cGMP- gated ion channels, causing hyperpolarization of the cell and activating the sensory neurons responsible for vision. Within the PDE family, PDE6 is the only enzyme known to have an inhibitory subunit (PDE6-γ), which allows for the regulation of cGMP levels. When PDE6-γ is bound to PDE6, the enzyme is turned “off” and cannot catalyze cGMP. The α subunit of the G-protein transducin removes PDE6-γ and activates PDE6. PDE6 has proven problematic to isolate, making it difficult to study experimentally …


Rescuing Acetylcholinesterase From Nerve Agent Inhibition: Protein Dynamics Driven Drug Discovery, Aiyana M. Emigh, Brian Bennion Jan 2013

Rescuing Acetylcholinesterase From Nerve Agent Inhibition: Protein Dynamics Driven Drug Discovery, Aiyana M. Emigh, Brian Bennion

STAR Program Research Presentations

Severe morbidity and mortality consequences result from irreversible inhibition of human acetylcholinesterase by organophosphates (OPs). Oxime-based reactivators are currently the only available treatments but lack efficacy in the central nervous system (CNS) where the most damage occurs. Computational docking and molecular dynamics (MD) simulations reveal complex structural barriers that may reduce oxime efficacy. These results may guide future drug designs of more effective countermeasures.