Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 113

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Analyzing Functional Interactions Of Designed Peptides By Nmr Spectroscopy, Wonsuk Choi Dec 2023

Analyzing Functional Interactions Of Designed Peptides By Nmr Spectroscopy, Wonsuk Choi

Pharmaceutical Sciences (MS) Theses

The development of small peptide-based therapeutics can be accelerated by the knowledge of relationships between the peptide structure and its functional interactions. Here, we report the analysis of two groups of synthetic peptides designed for two applications – broad bactericidal action and inhibition of protein-protein interactions in human cells. Novel amphiphilic peptides designed for antibacterial application incorporated arginine as cationic amino acids and non-natural amino acids that have aromatic side chains with similar hydrophobic properties as tryptophan. The interaction of lead cyclic peptides and their linear analogs with a phospholipid bilayer mimicking a bacterial membrane was studied using nuclear magnetic …


Nanodiscs: A Novel Approach To The Study Of The Methionine Abc Transporter System, Michael T. Winslow Aug 2023

Nanodiscs: A Novel Approach To The Study Of The Methionine Abc Transporter System, Michael T. Winslow

Master's Theses

Membrane transporter proteins play the vital role of moving compounds in and out of the cell and are essential for all living organisms. ATP Binding Cassette (ABC) family transporters function both as importers and exporters in prokaryotes. MetNI is an E. coli Type I ABC transporter responsible for the uptake of methionine into the cytosol from the cell periplasmic space through the cell membrane to maintain intracellular methionine pools. ABC transporters, like other membrane proteins, are most often mechanistically and structurally studied in vitro, solubilized by detergents. However, detergent micelles may affect the conformational changes of membrane proteins relative to …


Role Of Fat Content On The Structure And Function Of Human Skeletal Muscle, Joseph A. Gordon Iii Aug 2023

Role Of Fat Content On The Structure And Function Of Human Skeletal Muscle, Joseph A. Gordon Iii

Doctoral Dissertations

Muscle size does not fully explain variations in muscle strength. Fat content has been implicated in muscle weakness, though this relationship remains unclear. The relationship between fat and strength may vary between scales (e.g., cellular, organ, and organism). The goal of this dissertation was to clarify the role of fat in the structure and function of muscle using in vitro and in vivo techniques across multiple scales in adults 21-45 years old. Study 1 tested the agreement of intramyocellular lipid (IMCL) content between oil red o (ORO) and magnetic resonance spectroscopy (MRS) techniques. These measures of IMCL were also compared …


Fbg Αc 389 – 402 Modulates Factor Xiii Crosslinking In The Fibrinogen Αc Region., Francis Dean Orlina Ablan Aug 2023

Fbg Αc 389 – 402 Modulates Factor Xiii Crosslinking In The Fibrinogen Αc Region., Francis Dean Orlina Ablan

Electronic Theses and Dissertations

Fibrinogen (Fbg) is a coagulation protein critical for clot formation. Coagulation Factor XIII (FXIII) is a calcium-dependent transglutaminase that crosslinks reactive glutamines (Q) and lysines (K) between fibrin and other anti-fibrinolytic proteins. In the presence of Ca2+, FXIII could be activated non-proteolytically (FXIII-A°), or proteolytically by thrombin (FXIII-A*). Significant increases in clot stability and red blood cell retention are linked to FXIII activity in the fibrinogen αC region (Fbg Aα 221 – 610). This region contains several FXIII-reactive glutamines and lysines, as well as a binding site for FXIII-A* (Fbg αC 389 – 402) that includes a key …


Solving The Cable Equation, A Second-Order Time Dependent Pde For Non-Ideal Cables With Action Potentials In The Mammalian Brain Using Kss Methods, Nirmohi Charbe Jun 2023

Solving The Cable Equation, A Second-Order Time Dependent Pde For Non-Ideal Cables With Action Potentials In The Mammalian Brain Using Kss Methods, Nirmohi Charbe

Master's Theses

In this thesis we shall perform the comparisons of a Krylov Subspace Spectral method with Forward Euler, Backward Euler and Crank-Nicolson to solve the Cable Equation. The Cable Equation measures action potentials in axons in a mammalian brain treated as an ideal cable in the first part of the study. We shall subject this problem to the further assumption of a non-ideal cable. Assume a non-uniform cross section area along the longitudinal axis. At the present time, the effects of torsion, curvature and material capacitance are ignored. There is particular interest to generalize the application of the PDEs including and …


Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi May 2023

Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi

Nanoscience and Microsystems ETDs

Although the exact cause of Alzheimer’s disease (AD) is still unknown, it is widely considered that the accumulation of amyloid plaques composed of the amyloid-β (Aβ) peptide in the brain is linked to neurodegeneration. Co-localization of viral DNA with Aβ plaques, the association of brain infection and AD, and research indicating the protective effect of Aβ against bacteria and fungi in mice and human cells have led to the hypothesis that Aβ expression and deposition may be central to its function as an antimicrobial peptide (AMP). In my thesis research, we seek to elucidate how Aβ functions as an AMP …


Characterizing The Roles Of The Variable Linker And Hub Domains In Camkii Activation, Noelle Dziedzic Feb 2023

Characterizing The Roles Of The Variable Linker And Hub Domains In Camkii Activation, Noelle Dziedzic

Doctoral Dissertations

Learning and memory formation at the cellular level involves decoding complex electrochemical signals between nerve cells, or neurons. Understanding these processes at the molecular level requires a comprehensive study of calcium-sensitive proteins that serve as signal mediators within cells. More specifically, the protein calcium/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of downstream cellular signaling events in the brain, playing an important role in long term memory formation. CaMKII is encoded in humans on four different genes: alpha, beta, gamma and delta. For added complexity, each of these gene products can be alternatively spliced and translated into multiple protein …


Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez Dec 2022

Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez

Electronic Theses and Dissertations

Biophysical phenomena are modeled using a combination of quantum and classical methods to interpret and supplement three distinct and diverse problems in this dissertation. In the first project, decarboxylation reactions are ubiquitous across chemical and biological disciplines, yet the origin of non-catalytic solvent effects remains elusive. Specific solvent structure and energetics have not been well described for the monoanion of malonate, nor corrected from the gas-phase charge-assisted intramolecular hydrogen bond model known as “pseudochair”. In the aqueous phase, a low-lying energy conformer known as the “orthogonal conformation” is computed to be preferred by a three-water cluster of hydrogen bonding over …


The Effects Of Tubulin Post-Translational Modifications On The Flagellar Motility Of Trypanosoma Brucei, Katherine Wentworth Dec 2022

The Effects Of Tubulin Post-Translational Modifications On The Flagellar Motility Of Trypanosoma Brucei, Katherine Wentworth

All Theses

Trypanosoma brucei is a parasitic kinetoplastid that causes African trypanosomiasis and is transmitted to a mammalian host by the tsetse fly (Glossina spp.). T. brucei relies on its flagellar motility to carry out its morphological changes from the procyclic form (predominant in the fly vector) to the bloodstream form (infectious form in mammals) and navigate the bloodstream of its host. The driving structure within the flagellum is the axoneme, which is composed of microtubules and dynein motor proteins. The tubulin code hypothesis suggests that cells regulate microtubule motor protein activity through post-translational modifications (PTMs) of alpha and beta …


A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye Dec 2022

A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye

Doctoral Dissertations

T lymphocytes (T cells) play essential roles in the adaptive immune system. Each mature T cell expresses one type of functional T cell receptor (TCR). The TCR recognizes antigens bound to the major histocompatibility complex (MHC) in antigen presenting cells. The resulting stimulation signal crosses the transmembrane domain of TCR and initiates downstream signaling cascades. The human immune system relies on TCRs to recognize a variety of pathogens. Normally, TCR can distinguish the self-antigens from pathogenic antigens. However, dysfunction or aberrant expression of TCRs causes different inflammatory and autoimmune diseases, which afflict millions of people annually (Chapter I). Current treatments …


Chemosensory Receptors In Berghia Stephanieae: Bioinformatics And Localization, Kelsi L. Watkins Oct 2022

Chemosensory Receptors In Berghia Stephanieae: Bioinformatics And Localization, Kelsi L. Watkins

Masters Theses

Chemosensation is achieved through the binding of chemical signals to chemoreceptor proteins embedded in the membranes of sensory neurons. The molecular identity of these receptors, as well as the downstream processing of chemosensory signals, has been well studied in arthropods and vertebrates. However, very little is known about molluscan chemosensation. The identity of chemoreceptor proteins in the nudibranch mollusc Berghia stephanieae are unknown. Data from other protostome and molluscan studies suggest Berghia may use ionotropic receptors for some forms of chemoreception. This study used a bioinformatics approach to identify potential chemosensory ionotropic receptors in the transcriptome of Berghia. A …


Conformation Of The U12-U6atac Snrna Complex Of The Minor Spliceosome And Binding By Ntc-Related Protein Rbm22, Joanna Ciavarella Sep 2022

Conformation Of The U12-U6atac Snrna Complex Of The Minor Spliceosome And Binding By Ntc-Related Protein Rbm22, Joanna Ciavarella

Dissertations, Theses, and Capstone Projects

Splicing of precursor messenger (pre-m)RNA is a critical process in eukaryotes in which the non-coding regions, called introns, are removed and coding regions, or exons, are ligated to form a mature mRNA. This process is catalyzed by the spliceosome, a multi-mega Dalton ribonucleoprotein complex assembled from five small nuclear ribonucleoproteins (snRNP) in the form of small nuclear (sn)RNA-protein complexes (U1, U2, U4, U5 and U6) and >100 proteins. snRNA components catalyze the two transesterification reactions while proteins perform critical roles in assembly and rearrangement. U2 and U6 snRNAs are the only snRNAs directly implicated in catalyzing the splicing of pre-mRNA. …


Hsp- 70 Mediated Nervous System Enhancement By Etas, Taylor Carter Aug 2022

Hsp- 70 Mediated Nervous System Enhancement By Etas, Taylor Carter

Theses (2016-Present)

Neurodegenerative disease in the CNS is usually a product of increased oxidative stress in the brain. In this study we tested the ability of an asparagus supplement ETAS to help reduce oxidative stress in the normal brains of Balb C mice. Oxidative stress pathways (Heat shock proteins) are usually cumulative in the damage they cause when disrupted. We treated normal Balb C mice with ETAS and had control groups with no ETAS supplementation in their regular diet. We then sacrificed the mice and conducted microarray studies to compare oxidative stress pathway genes. We also characterized the effects of regular oxidative …


Applications Of Nuclear Magnetic Resonance Spectroscopy: From Drug Discovery To Protein Structure And Dynamics., Mark Vincent C. Dela Cerna Aug 2022

Applications Of Nuclear Magnetic Resonance Spectroscopy: From Drug Discovery To Protein Structure And Dynamics., Mark Vincent C. Dela Cerna

Electronic Theses and Dissertations

The versatility of nuclear magnetic resonance (NMR) spectroscopy is apparent when presented with diverse applications to which it can contribute. Here, NMR is used i) as a screening/ validation tool for a drug discovery program targeting the Phosphatase of Regenerating Liver 3 (PRL3), ii) to characterize the conformational heterogeneity of p53 regulator, Murine Double Minute X (MDMX), and iii) to characterize the solution dynamics of guanosine monophosphate kinase (GMPK). Mounting evidence suggesting roles for PRL3 in oncogenesis and metastasis has catapulted it into prominence as a cancer drug target. Yet, despite significant efforts, there are no PRL3 small molecule inhibitors …


Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar May 2022

Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar

All Dissertations

An Optical tweezer is a tightly focused laser beam that applies and senses precise and localized optical force to a dielectric microsphere and offers a unique and effective tool for manipulating the single cell or cell components, including nucleotides and dynein motor proteins. Here, I used highly stabilized optomechanical components and ultra-sensitive detection modules to significantly improve the measurement capabilities over a wide range of temporal and spatial scales. I combined the optical tweezer-based force spectroscopy technique with fluorescence microscopy to develop an integrated high-resolution force-fluorescence system capable of measuring displacements at sub-nanometer, forces at sub-piconewton over a temporal range …


Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair May 2022

Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair

Dissertations & Theses (Open Access)

KRAS, a 21 kDa small GTPase protein, functions as a molecular switch playing a key role in regulating cell proliferation. Dysregulation of KRAS signaling by oncogenic mutations leads to uncontrolled cell proliferation, a hallmark of cancer cells. Attempts to therapeutically target oncogenic KRAS have led to limited success resulting in a need to identify new mechanisms to targeting KRAS. The interaction of KRAS with its regulators, effectors, and the membrane present one such avenue. In this study, we investigated how post-translational covalent and environmental modifications could modulate these interactions of KRAS. Using computational molecular dynamics simulations, nuclear magnetic resonance spectroscopy …


Hyper Stable Variants Of Fgf-1-Fgf-2 Dimer, Madison Shields Mcclanahan May 2022

Hyper Stable Variants Of Fgf-1-Fgf-2 Dimer, Madison Shields Mcclanahan

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast Growth Factors (FGFs), including FGF-1 and FGF-2, are proteins that play a crucial role in cell proliferation, cell differentiation, cell migration, and tissue repair. FGF-1 and FGF-2 are useful in accelerating the healing process in the human body; however, these proteins are naturally thermally unstable, resulting in a relatively low half-life in vivo. 1,8 In efforts to improve the stability of this protein, FGF-1 and FGF-2 proteins are engineered by combining the amino acid sequences of the two proteins to form a heterodimer and obtain novel properties. These two FGF variants are chosen for their specific wound healing capabilities. …


Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd May 2022

Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd

Chancellor’s Honors Program Projects

No abstract provided.


Design, Synthesis, And Analysis Of Paired Coiled-Coil Peptidic Molecular Building Blocks Used For Linearly Controlled Self-Assembly Of Α-Helical Coiled-Coil Heterodimer Peptide Pairs, Jason Distefano Apr 2022

Design, Synthesis, And Analysis Of Paired Coiled-Coil Peptidic Molecular Building Blocks Used For Linearly Controlled Self-Assembly Of Α-Helical Coiled-Coil Heterodimer Peptide Pairs, Jason Distefano

Chemistry Theses

Molecular building blocks are fundamental to biological synthesis and processes and have been utilized in advanced materials, drugs and drug delivery systems, and biotechnology. Proteins have been used as molecular building blocks for the construction of complex, well-ordered structures. Coiled-coil protein domains are essential subunits used for the oligomerization of protein complexes, gene expression, and structural elements of biological materials. The synthesis and assembly of proteins utilizing coiled-coil motifs are of great scientific interest due to their potential applications in disease treatment, biomechanical motors, nanoscale delivery systems, etc. However, assembling protein complexes with specific morphology is still challenging because …


Spatially Controlled Monolayers For Electrically Switchable Biomolecule Detection, Eduard Lukhmanov Jan 2022

Spatially Controlled Monolayers For Electrically Switchable Biomolecule Detection, Eduard Lukhmanov

Theses, Dissertations and Capstones

The development of biosensors that are low-waste, highly stable, and possess an ability to be interchanged between capturing and non-capturing configurations is promising for the biodetector field. Stable packing and attachment of the sensor, the ability to create an interchangeable detecting probe of interest relatively easily, and dynamic control of the probe via a reversible bias can provide for that. With the set goals to control all those properties, DNA-dendron conjugate molecules were designed, synthesized in solution, purified, and utilized to make self-assembled monolayers of single-stranded DNA on gold. To be able to manipulate the conjugates’ sensing qualities in the …


The Role Of Irf-1 In Spontaneous Mouse Glioma, Aakash B. Vaidya Jan 2022

The Role Of Irf-1 In Spontaneous Mouse Glioma, Aakash B. Vaidya

Theses and Dissertations

Glioblastoma Multiforme has been shown to be one of the deadliest primary brain cancers. One of the reasons why GBM is so deadly, is a unique immunosuppressive tumor microenvironment that promotes GBM growth and progression. Both astrocyte and microglia have been implicated in immunosuppression. In this study, we explored the role of Interferon Regulatory Factor 1 (IRF-1) in astrocytes and glioma cells on the growth of spontaneous glioma tumors. IRF-1 is regulated by the JAK/STAT pathway and induces expression of Programmed death ligand 1 (PD-L1). PD-L1 downregulates immune responses to glioma. We found that IRF-1 had no effect on spontaneous …


Analysis Of The Antimicrobial Activity Of The Novel Chemotherapeutic Drug, Tpp1, Against Pseudomonas Aeruginosa And The Hydrogel Delivery Of Water-Soluble Antimicrobial Compounds, Alex Gasper Jan 2022

Analysis Of The Antimicrobial Activity Of The Novel Chemotherapeutic Drug, Tpp1, Against Pseudomonas Aeruginosa And The Hydrogel Delivery Of Water-Soluble Antimicrobial Compounds, Alex Gasper

Senior Independent Study Theses

Cancer is one of the leading causes of death in the world, and it is commonly linked with bacterial infections that often complicate treatments. Recently, chemotherapeutics have been developed that are able to act as anti-cancer agents using delocalized lipophilic cations (DLCs) that are able to specifically target mitochondrial membranes of cancer cells. TPP1 is a newly developed chemotherapeutic drug that has activity against bladder cancer and melanoma cell lines in vitro. In order to determine if TPP1 has antimicrobial activity, TPP1 was tested against a common bacteria, Pseudomonas aeruginosa, to determine if antimicrobial activity was present. This testing was …


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


Conformation Of The Protein-Free Spliceosomal U2-U6 Snrna Complex And Remodeling By Mg2+ And Proteins, Huong Chu Sep 2021

Conformation Of The Protein-Free Spliceosomal U2-U6 Snrna Complex And Remodeling By Mg2+ And Proteins, Huong Chu

Dissertations, Theses, and Capstone Projects

Splicing of precursor messenger RNA is an essential process in eukaryotes in which the non-coding regions (introns) are removed and coding regions (exons) ligated together to form a mature mRNA. This process is catalyzed by a multi-mega Dalton ribonucleoprotein complex called the spliceosome, which is assembled from five small nuclear ribonucleoproteins (snRNP) in the form of RNA-protein complexes (U1, U2, U4, U5 and U6) and hundreds of proteins. U2 and U6 small nuclear (sn)RNAs are the only snRNAs directly implicated in catalyzing the splicing of pre-mRNA, but assembly and rearrangement steps prior to catalysis require numerous proteins. Previous studies have …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti Sep 2021

Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti

Dissertations, Theses, and Capstone Projects

Photoreceptors play a crucial role in signal transduction as specialized proteins which sense light as environmental stimuli and transduce the signal to control of downstream functions. Here we focus our attention on one class of these proteins, the Light-Oxygen-Voltage (LOV) domain, which is sensitive to blue light via an internally-bound flavin chromophore. Since their initial discovery in plant phototropins, many details of their photochemistry, chromophore interactions, and use with a diverse set of functional effectors have been described. However, several key details, especially a comprehensive understanding of signaling mechanism and its regulation, still remain elusive due in part to the …


Uncovering The Structural Basis For Mitochondrial Calcium Uniporter Dominant Negative Beta Subunit (Mcub) Function, Megan L. Noble Jun 2021

Uncovering The Structural Basis For Mitochondrial Calcium Uniporter Dominant Negative Beta Subunit (Mcub) Function, Megan L. Noble

Electronic Thesis and Dissertation Repository

Mitochondrial calcium (Ca2+) uptake is regulated by the mitochondrial Ca2+ uniporter (MCU), a tetrameric channel that is regulated by interactions with several accessory proteins, including MCU dominant negative beta subunit (MCUb). MCUb inhibits Ca2+ uptake by assembling into the MCU complex and is incapable of forming a functional Ca2+ channel. The MCU amino (N)-terminal domain plays an essential role in controlling MCU structure and function and contains cation binding sites that, when bound by Ca2+ and magnesium (Mg2+), cause decreased MCU assembly and reduced mitochondrial Ca2+ uptake. MCU and MCUb contain …


Molecular Dynamics Simulations Provide Insight Into Stability Of Hyperthermophilic Endoglucanases, Logan E. Sheffield Jun 2021

Molecular Dynamics Simulations Provide Insight Into Stability Of Hyperthermophilic Endoglucanases, Logan E. Sheffield

Electronic Theses and Dissertations

Endoglucanases play a key role in the industrial production of bioethanol, but the most efficient method requires the utilization of high temperatures and is currently limited by the thermostability of endoglucanases. For this reason, it would be beneficial to discover more high-efficiency, thermostable enzymes to utilize in the hydrolytic process. In this study molecular dynamics simulations were performed on structurally similar endoglucanases with varying levels of thermostability to gain insight on what factors contribute to thermostability in endoglucanases. RMSD, RMSF, PCA, hydrogen bonding and salt bridges were analyzed. Finally, protein energy networks were constructed from nonbonded interaction potentials and analysis …


Design Of Fibril Forming Collagen Mimetic Peptides: Heterotrimers And Nucleation Domains, Sally Tan Jan 2021

Design Of Fibril Forming Collagen Mimetic Peptides: Heterotrimers And Nucleation Domains, Sally Tan

Theses and Dissertations

This paper attempts to design collagen mimetic peptides where the triple-helical region mimics that of human Type I Collagen. With consideration for chain selection and chain register, we utilize the NC2 domain of heterotrimeric Type IX Collagen as a nucleation domain for triple-helix folding.


Development Of Fluorescence Microscopy Approaches To Study Subcellular Protein Transport And Enzymatic Activity, Anchal Singh Jan 2021

Development Of Fluorescence Microscopy Approaches To Study Subcellular Protein Transport And Enzymatic Activity, Anchal Singh

Masters Theses

Understanding the subcellular localization of proteins and their activity is important in understanding their normal function in eukaryotic cells. Fluorescence cellular imaging techniques can selectively and sensitively visualize subcellular biochemistry. Using this approach, two different methods were employed in this thesis. The first focused on studying protein import into peroxisome and the other on monitoring the activity of an endoplasmic reticulum (ER)-localized enzyme, human carboxylesterase 1 (CES1).

Peroxisomes are mainly known as the center for long chain fatty acid b-oxidation as well as the production and detoxification of hydrogen peroxide. Proteins which are needed in the peroxisomes are encoded in …