Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Using Artificial (Ai) To Predict A Structure Of Protein Complex, Yiqing Zang Apr 2024

Using Artificial (Ai) To Predict A Structure Of Protein Complex, Yiqing Zang

SACAD: John Heinrichs Scholarly and Creative Activity Days

Proteins play pivotal roles in essential life processes and elucidating their three-dimensional (3D) structures is crucial for understanding their functions. AlphaFold2, an advanced artificial intelligence-based method developed by Google DeepMind, has emerged as a promising tool for predicting protein structures. In this study, we evaluated the predictive capabilities of AlphaFold2. Our findings highlight AlphaFold2's efficacy in providing valuable insights into protein structure prediction, albeit with certain limitations. While AlphaFold2 represents a significant advancement in the field, its utility is best realized when integrated with complementary experimental approaches. Consequently, combining the strengths of AlphaFold2 with experimental validation remains essential for achieving …


Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee Apr 2022

Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee

University Scholar Projects

Misregulation of post-translational modifications of microtubule-associated protein tau is implicated in several neurodegenerative diseases including Alzheimer’s disease. Hyperphosphorylation of tau promotes aggregation of tau monomers into filaments which are common in tau-associated pathologies. Therefore, tau is a promising target for therapeutics and diagnostics. Recently, high-affinity, high-specificity single-chain variable fragment (scFv) antibodies against pThr-231 tau were generated and the most promising variant (scFv 3.24) displayed 20-fold increased binding affinity to pThr-231 tau compared to the wild-type. The scFv 3.24 variant contained five point mutations, and intriguingly none were in the tau binding site. The increased affinity was hypothesized to occur due …


Disruption Of Claudin-Made Tight Junction Barriers By Clostridium Perfringens Enterotoxin: Insights From Structural Biology, Chinemerem P. Ogbu, Sourav Roy, Alex J. Vecchio Mar 2022

Disruption Of Claudin-Made Tight Junction Barriers By Clostridium Perfringens Enterotoxin: Insights From Structural Biology, Chinemerem P. Ogbu, Sourav Roy, Alex J. Vecchio

Department of Biochemistry: Faculty Publications

Claudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium Clostridium perfringens causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins. CpE binds to claudins at or near tight junctions in the gut and disrupts their barrier function, potentially by disabling their assembly or via cell signaling means—the mechanism(s) remain unclear. CpE ultimately destroys claudin-expressing cells …


Effects Of The Dihydrouracil Lesion On Dna Using 1h/31p 1d And 2d Solution Nmr, Benjamin M. Boyd Dec 2019

Effects Of The Dihydrouracil Lesion On Dna Using 1h/31p 1d And 2d Solution Nmr, Benjamin M. Boyd

MSU Graduate Theses

The effects of the dihydrouracil lesion in DNA were studied using two dimensional NMR spectroscopy. The sequence used was based off of the Drew-Dickerson Dodecamer, with the cytosine in the three position replaced by a dihydrouracil. All of the nonexchangeable proton chemical shifts, with the exception of the H2, H5’, and H5’’, of the lesioned DNA were identified using NOESY spectra and then compared to the chemical shift values of the Drew Dickerson Dodecamer. The largest differences in chemical shifts were observed in the nucleotides neighboring the lesion, both within the strand and on the opposite strand. The imino exchangeable …


Rep-Dna Complexes And Their Role In Aav Dna Transactions, Vishaka Santosh Jan 2018

Rep-Dna Complexes And Their Role In Aav Dna Transactions, Vishaka Santosh

Theses and Dissertations

Adeno-associated Virus (AAV) Rep proteins are multifunctional proteins that carry out various DNA transactions required for the life cycle of AAV. The Rep proteins have been found to be important for genome replication, gene regulation, site-specific integration and play an essential role in genome packaging. There are two main groups of Rep proteins: large and small Reps; both groups are SF3 helicase family members. During DNA packaging, studies have shown that the small Rep proteins are critical to produce fully packed particles. Using stopped-flow kinetic analysis, we show a significant difference in helicase activity between the small and large Rep …