Open Access. Powered by Scholars. Published by Universities.®

Biology and Biomimetic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

286 Full-Text Articles 491 Authors 92,186 Downloads 66 Institutions

All Articles in Biology and Biomimetic Materials

Faceted Search

286 full-text articles. Page 12 of 14.

Development Of A High Precision Quantum Dot Synthysis Method Utilizing A Microfluidic Reactor And In-Line Fluorescence Cell, Harry Lafferty, Jonny Hoadley 2013 California Polytechnic State University - San Luis Obispo

Development Of A High Precision Quantum Dot Synthysis Method Utilizing A Microfluidic Reactor And In-Line Fluorescence Cell, Harry Lafferty, Jonny Hoadley

Materials Engineering

Quantum dots show great potential for use as spectral converters in solar cells, lighting applications and biological imaging. These applications require precise control of quantum dot size to maximize performance. The fluorescence profile of quantum dots in solution correlates directly with particle size. An alternative, high precision process was developed for the synthesis of cadmium-selenide quantum dots using a microfluidic reactor and fluorescence flow through cell. The process required creating separate cadmium and selenium precursors that were then mixed in a nitrogen environment at 17± 1°C. Using an NE-300® syringe pump, the solution was pumped through a microfluidic reactor …


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo 2013 The University of Western Ontario

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this …


Structure And Properties Of Cocoons And Silk Fibers Produced By Attacus Atlas, Narendra Reddy, Yi Zhao, Yiqi Yang 2013 University of Nebraska - Lincoln

Structure And Properties Of Cocoons And Silk Fibers Produced By Attacus Atlas, Narendra Reddy, Yi Zhao, Yiqi Yang

Department of Textiles, Merchandising, and Fashion Design: Faculty Publications

Silk fibers in the three layers of Attacus atlas (A. atlas) cocoons have morphological structure and tensile properties similar to that of Bombyx mori silk. Attempts are being made to produce silk for commercial applications from cocoons of relatively unknown wild insects due to the unique properties of the fibers and as a source of income and employment. In this research, A. atlas cocoons were used to study the chemical composition, morphology, physical structure and tensile properties of the silk fibers in the cocoons and ability of the fibers to support the attachment and proliferation of mouse fibroblast cells. It …


Microfabricated Nanotopological Surfaces For Study Of Adhesion-Dependent Cell Mechanosensitivity, Weiqiang Chen, Yubing Sun, Jianping Fu 2013 University of Michigan - Ann Arbor

Microfabricated Nanotopological Surfaces For Study Of Adhesion-Dependent Cell Mechanosensitivity, Weiqiang Chen, Yubing Sun, Jianping Fu

Weiqiang Chen

Cells exhibit high sensitivity and diverse responses to the intrinsic nanotopography of the extracellular matrix through their nanoscale cellular sensing machinery. A simple microfabrication method for precise control and spatial patterning of the local nanoroughness on glass surfaces by using photolithography and reactive ion etching is reported. It is demonstrated that local nanoroughness as a biophysical cue could regulate a diverse array of NIH/3T3 fi broblast behaviors, including cell morphology, adhesion, proliferation, migration, and cytoskeleton contractility. The capability to control and further predict cellular responses to nanoroughness might suggest novel methods for developing biomaterials mimicking nanotopographic structures in vivo for …


Diagnosis Of Systemic Inflammation Using Transendothelial Electrical Resistance And Low-Temperature Co-Fired Ceramic Materials, William L. Mercke 2013 University of Kentucky

Diagnosis Of Systemic Inflammation Using Transendothelial Electrical Resistance And Low-Temperature Co-Fired Ceramic Materials, William L. Mercke

Theses and Dissertations--Chemical and Materials Engineering

Systemic inflammation involves a complex array of cytokines that can result in organ dysfunction. Mortality remains high despite the vast amount of research conducted to find an effective biomarker. The cause of systemic inflammation can be broad and non-specific; therefore, this research investigates using transendothelial electrical resistance (TEER) measurements to better define systemic inflammatory response syndrome (SIRS)/sepsis within a patient. Results show a difference in TEER measurements between healthy individuals and SIRS-rated patients. This research also displays correlations between TEER measurements and biomarkers currently studied with systemic inflammation (tumor necrosis factor-α, C- reactive protein, procalcitonin). Furthermore, this research also presents …


Micromechanical Analysis Of Nanoparticle-Reinforced Dental Composites, Yi Hua, Linxia Gu, Hidehiko Watanabe 2013 University of Nebraska-Lincoln

Micromechanical Analysis Of Nanoparticle-Reinforced Dental Composites, Yi Hua, Linxia Gu, Hidehiko Watanabe

Department of Mechanical and Materials Engineering: Faculty Publications

The mechanical behavior of TiO2 nanoparticle-reinforced resin-based dental composites was characterized in this work using a three-dimensional nanoscale representative volume element. The impacts of nanoparticle volume fraction, aspect ratio, stiffness, and interphase zone between the resin matrix and nanoparticle on the bulk properties of the composite were characterized. Results clearly demonstrated the mechanical advantage of nanocomposites in comparison to microfiber-reinforced composites. The bulk response of the nanocomposite could be further enhanced with the increased nanoparticle volume fraction, or aspect ratio, while the influence of nanoparticle stiffness was minimal. The effective Young’s modulus and yield strength of the composite was …


Scaling Reversible Adhesion In Synthetic And Natural Adhesive Systems., Michael D. Bartlett, Duncan J. Irschick, Alfred J. Crosby 2012 University of Massachusetts Amherst

Scaling Reversible Adhesion In Synthetic And Natural Adhesive Systems., Michael D. Bartlett, Duncan J. Irschick, Alfred J. Crosby

Michael Bartlett

No abstract provided.


Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu 2012 University of Michigan - Ann Arbor

Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu

Weiqiang Chen

Circulating tumor cells (CTCs) detached from both primary and metastatic lesions represent a potential alternative to invasive biopsies as a source of tumor tissue for the detection, characterization and monitoring of cancers. Here we report a simple yet effective strategy for capturing CTCs without using capture antibodies. Our method uniquely utilized the differential adhesion preference of cancer cells to nanorough surfaces when compared to normal blood cells and thus did not depend on their physical size or surface protein expression, a significant advantage as compared to other existing CTC capture techniques.


Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa 2012 The University of Western Ontario

Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa

Electronic Thesis and Dissertation Repository

Bone defects are a prevalent problem in orthopedics and dentistry. Calcium phosphate-based coatings and nanocomposites offer unique solutions towards producing scaffolds with suitable physical, mechanical and biological properties for bone regeneration.

We developed a novel method to synthesize hydroxyapatite (HA) particles with high aspect ratio using sol-gel chemistry and hydrothermal treatment. We obtained tunable pure-phase carbonated-HA in the form of micro/nanorods and nanowires (diameters 25-800 nm). To mimic the structure of bone, HA nanowires were homogenously mixed within poly(ε-caprolactone) (PCL) to produce nanocomposites with improved mechanical properties as determined by uniaxial tensile testing.

Surface chemistry and topography of biomaterials play …


Lumbar Vertebral Density And Mechanical Properties In Aged Ovariectomized Rats Treated With Estrogen And Norethindrone Or Norgestimate, Carla Vanin, Neil MacLusky, Debbie Chachra, Mehran Kasra, Marc Grynpas, Robert Casper 2012 University of Toronto

Lumbar Vertebral Density And Mechanical Properties In Aged Ovariectomized Rats Treated With Estrogen And Norethindrone Or Norgestimate, Carla Vanin, Neil Maclusky, Debbie Chachra, Mehran Kasra, Marc Grynpas, Robert Casper

Debbie Chachra

OBJECTIVE: This study was designed to investigate the effects of estrogen alone or combined with two different progestins, norethindrone or norgestimate, on bone density and compressive mechanical properties in an aged rat model.

STUDY DESIGN: Twenty 11-month-old female Sprague-Dawley rats were sham operated (intact control) and 80 wee overiectomized. Three groups of 20 ovariectomized rats were implanted with Silastic silicon rubber (Dow Corning, Midland, Mich.) capsules containing 5% estradiol (wt/wt) in cholesterol. All rats in the intact control (group 1) and the ovariectomized (group 2) and the first of the overiectomized plus estrogen (group 3) groups were injected subcutaneously daily …


The Characterization And Comparison Of Biochar Produced From A Decentralized Reactor Using Forced Air And Natural Draft Pyrolysis, Leah Herbert, Ian Hosek, Rishi Kripalani 2012 California Polytechnic State University - San Luis Obispo

The Characterization And Comparison Of Biochar Produced From A Decentralized Reactor Using Forced Air And Natural Draft Pyrolysis, Leah Herbert, Ian Hosek, Rishi Kripalani

Materials Engineering

The soil additive properties of biochar have proven both effective and globally beneficial, but depend heavily on feedstock used and process conditions. This study characterizes how forced and natural draft air flows affect the biochar’s soil amendment potential. Biochars manufactured from two pine species of feedstock, in timber and pellet form, were compared against a designer biochar. The designer biochar held the lowest C:N ratio (57.43), followed by the natural draft pellets (199.5), forced air timber (282.5), forced air pellets (422.7), and natural draft timber (503.7). The designer char had the largest cation exchange capacity at 138.5 cmolc/kg; the decentralized …


Determining An Inorganic Mineralization Process To Inhibit Organic Degradation And Preserve The Dimensional Stability Of Bamboo, Eric Hahn 2012 California Polytechnic State University - San Luis Obispo

Determining An Inorganic Mineralization Process To Inhibit Organic Degradation And Preserve The Dimensional Stability Of Bamboo, Eric Hahn

Materials Engineering

Bamboo is a renewable natural composite with potential as both a construction and synthesis material. The components of bamboo are cellulosic vascular bundles imbedded within a lignin matrix that create a porous hierarchical structure. This structure has low density while maintaining high strength, toughness, and elasticity, but is susceptible to organic decay. A study was performed to evaluate the effect of varying bamboo culm age (1-3 years) and density (0.72-1.05 g/cm3) on the ability to control inorganic mineral precipitation to prevent degradation and preserve dimensional stability of the organic matrix. Internodal culm samples were immersed in solutions of …


Artificial Alveolar-Capillary Membrane On A Microchip, Keith Male 2012 California Polytechnic State University - San Luis Obispo

Artificial Alveolar-Capillary Membrane On A Microchip, Keith Male

Materials Engineering

A microfluidic device was synthesized out of polydimethyl siloxane (PDMS) to simulate the structure of the alveolar-capillary interface of the human lung. Soft lithography techniques were used to build a mold structure out of SU-8 epoxy at heights ranging from 30µm to 110 µm on a silicon substrate, with the 70 µm structure working the best. A mixture of 10:1 Sylgard 184 elastomer was then cast using the mold, and cured at a temperature of 80oC. For the porous membrane, the PDMS was spun on at 6000rpm for 30 seconds using a spin coater to produce a membrane …


The Effects Of Concentration, Stir Rate, And Processing Temperature On The Iridescence Of Polymethyl Methacrylate Nanoparticles, David Baruela 2012 California Polytechnic State University - San Luis Obispo

The Effects Of Concentration, Stir Rate, And Processing Temperature On The Iridescence Of Polymethyl Methacrylate Nanoparticles, David Baruela

Materials Engineering

Synthetic opals were synthesized by creating polymethyl methacrylate (PMMA) nanospheres in order to determine which conditions would create the best iridescent samples. The factors affecting the iridescence were nanosphere concentration, stir rate, and processing temperature. PMMA solutions were made by adding 17 mg of granular azobis to a solution of 16 mL of distilled water with 3 mL of methyl methacrylate (MMA). The solution was stirred at different rates, slow and fast, and different temperatures, 70 °C and 90 °C, under a constant flow of nitrogen gas for 40 minutes until the polymerization reaction was complete. Glass substrates were prepared …


The Mitigation Of Eutrophication Using Microporous Polymer Membranes To Control Algae Growth, Christopher R. Riley 2012 California Polytechnic State University - San Luis Obispo

The Mitigation Of Eutrophication Using Microporous Polymer Membranes To Control Algae Growth, Christopher R. Riley

Materials Engineering

A system was designed to mitigate the accelerated process of anthropogenic eutrophication. This system aimed to contain Chlorella Vulgaris microalgae cells within an enclosed polymer membrane pouch while allowing for water and nutrients to diffuse through the pouch. As a test model, a 10 gallon aquarium was partitioned into three sections using polycarbonate membranes with 1 micron pore diameters. Each section was then gradually filled with a deionized water and Bristol solution recommended for microalgae growth. Phosphate and nitrate were added to Section A of the aquarium and allowed to diffuse throughout the tank. A water pump was used to …


Nanocharacterization Of Porous Materials With Atomic Force Microscopy, Yasemin Kutes 2012 Institute of Materials Science

Nanocharacterization Of Porous Materials With Atomic Force Microscopy, Yasemin Kutes

Master's Theses

Scanning Probe Microscopy techniques have proven very useful in the investigation of porous nanostructured surfaces. Especially, Atomic Force Microscopy (AFM) has been widely used due to its compatibility with non-conducting surfaces. In particular, AFM often complements other techniques like scanning and transmission electron microscopy by providing quantitative surface information coupled with nanoscale spatial resolution. Its ability to operate in fluid is also important, as this allows researchers to mimic the physiological environment of biological materials and systems. In this work, two main types of porous materials are studied with AFM, including Phosphoric Acid Fuel Cell (PAFC) electrode catalyst layers, and …


Characteristics And Functionalities Of Natural And Bioinspired Nanomaterials, Lijin Xia 2012 University of Tennessee, Knoxville

Characteristics And Functionalities Of Natural And Bioinspired Nanomaterials, Lijin Xia

Doctoral Dissertations

Green nanoscience is a rapidly emerging field that aims to achieve the maximum performance and benefits from nanotechnology, while minimizing the impact on the environment. In this study, several methods for the green nanomanufacturing of biomedically important nanomaterials, specifically through the use of natural plants, have been extensively investigated. It was found that natural nanomaterials are inherent within plants, and can be further manipulated for potential biomedical applications. In addition, the metabolites and reductive capacity of plant extracts can be used to synthesize metallic nanoparticles with advantages over semi-conductor based nanomaterials. Nanoparticles were found to exist in the extracts produced …


Structural Dna Origami: Engineering Supermolecular Self-Assembly For Nanodevice Fabrication, Craig Marshal Onodera 2012 Boise State University

Structural Dna Origami: Engineering Supermolecular Self-Assembly For Nanodevice Fabrication, Craig Marshal Onodera

Boise State University Theses and Dissertations

Two challenges encountered in nanotechnology are the ability to create nanostructures inexpensively and the ability to arrange nanomaterials with a precision commensurate with their size. In nature, nanostructures are created using a bottom-up approach, whereby molecules hierarchically self-assemble into larger systems. Similarly, structural DNA nanotechnology harnesses the programmability, specificity, and structural integrity of DNA to engineer synthetic, self-assembled materials. For example, during scaffolded DNA origami, a long single stranded DNA polymer is artificially folded into nanostructures using short oligonucleotides. Once folded, two- and three-dimensional nanostructures may be decorated with proteins, metallic nanoparticles, and semiconductor quantum dots. Using gold nanoparticles and …


Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu 2012 University of Michigan - Ann Arbor

Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu

Weiqiang Chen

Human embryonic stem cells (hESCs) have great potentials for future cell-based therapeutics. However, their mechanosensitivity to biophysical signals from the cellular microenvironment is not well characterized. Here we introduced an effective microfabrication strategy for accurate control and patterning of nanoroughness on glass surfaces. Our results demonstrated that nanotopography could provide a potent regulatory signal over different hESC behaviors, including cell morphology, adhesion, proliferation, clonal expansion, and self-renewal. Our results indicated that topological sensing of hESCs might include feedback regulation involving mechanosensory integrin-mediated cell matrix adhesion, myosin II, and E-cadherin. Our results also demonstrated that cellular responses to nanotopography were cell-type …


The Influence Of Heterogeneous Meninges On The Brain Mechanics Under Primary Blast Loading, Linxia Gu, Mehdi S. Chafi, Shailesh Ganpule, Namas Chandra 2012 University of Nebraska-Lincoln

The Influence Of Heterogeneous Meninges On The Brain Mechanics Under Primary Blast Loading, Linxia Gu, Mehdi S. Chafi, Shailesh Ganpule, Namas Chandra

Department of Mechanical and Materials Engineering: Faculty Publications

In the modeling of brain mechanics subjected to primary blast waves, there is currently no consensus on how many biological components to be used in the brain–meninges–skull complex, and what type of constitutive models to be adopted. The objective of this study is to determine the role of layered meninges in damping the dynamic response of the brain under primary blast loadings. A composite structures composed of eight solid relevant layers (including the pia, cerebrospinal fluid (CSF), dura maters) with different mechanical properties are constructed to mimic the heterogeneous human head. A hyper-viscoelastic material model is developed to better represent …


Digital Commons powered by bepress