Open Access. Powered by Scholars. Published by Universities.®

Dynamics and Dynamical Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

200 Full-Text Articles 265 Authors 163,856 Downloads 54 Institutions

All Articles in Dynamics and Dynamical Systems

Faceted Search

200 full-text articles. Page 4 of 9.

Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar 2019 University of Massachusetts Amherst

Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar

Doctoral Dissertations

Material nanostructures such as nanowires, quantum dots, and nanorings have a wide variety of applications in electronic and photonic devices among numerous others. Assembling uniformly arranged and consistently sized nanostructure patterns on solid material surfaces is a major challenge for nanotechnology. This dissertation focuses on developing predictive models capable of simulation and analysis of such nanopattern formation on bulk material and strained thin film surfaces. Single-layer atomic clusters (islands) of sizes larger than a critical size on crystalline conducting substrates undergo morphological instabilities when driven by an externally applied electric field or thermal gradient. We have conducted a systematic and …


Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim 2019 University of Massachusetts Amherst

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim

Doctoral Dissertations

Recent advances in the field of biomedical and life-sciences are increasingly demanding more life-like actuation with higher degrees of freedom in motion at small scales. Many researchers have developed various solutions to satisfy these emerging requirements. In many cases, new solutions are made possible with the development of novel polymeric actuators. Advances in polymeric actuation not only addressed problems concerning low degree of freedom in motion, large system size, and bio-incompatibility associated with conventional actuators, but also led to the discovery of novel applications, which were previously unattainable with conventional engineered systems. This dissertation focuses on developing novel actuation mechanisms …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan 2019 Southern Methodist University

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Design And Control Of Fiber Encapsulation Additive Manufacturing, Matt Saari 2019 Southern Methodist University

Design And Control Of Fiber Encapsulation Additive Manufacturing, Matt Saari

Mechanical Engineering Research Theses and Dissertations

This work presents the design, development, and analysis of the Fiber Encapsulation Additive Manufacturing (FEAM) system developed at the Laboratory for Additive Manufacturing Robotics \& Automation at the Lyle School of Engineering at Southern Methodist University. The innovation introduced by FEAM is the ability to insert a continuous fiber of different material into the flowing extrudate. Correctly positioning the fiber feed inside the extrudate while turning the fiber in arbitrary directions is a critical aspect of the technology. This will allow for the full exploitation of the capabilities of the FEAM technology to produce robotic components that actuate and sense. …


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller 2019 University of Arkansas, Fayetteville

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


Influence Of Leading Edge Oscillatory Blowing On Time-Accurate Dynamic Store Separation, Ryan G. Saunders 2019 Air Force Institute of Technology

Influence Of Leading Edge Oscillatory Blowing On Time-Accurate Dynamic Store Separation, Ryan G. Saunders

Theses and Dissertations

The primary objective of this research is to support the static and dynamic characterization and the time-accurate dynamic load data acquisition of store separation from a cavity with leading edge oscillatory blowing. Developing an understanding of, and potentially controlling, pitch bifurcation of a store release is a motivation for this research. The apparatus and data acquisition system was used in a two-part experiment to collect both static and dynamic testing data in the AFIT low speed wind tunnel in speeds of 60, 100, and 120 mph, from Reynolds numbers varying from 5.5x104 to 4.6x105, depending on reference …


Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung 2019 Air Force Institute of Technology

Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung

Theses and Dissertations

A recent research effort, sponsored by the Air Force Office of Scientific Research, numerically investigated the unsteady aerodynamic flow field around an oscillating, straked, delta wing. The study was centered on determining the importance of the unsteady aerodynamic forces acting as a driver for a nonlinear motion known as limit cycle oscillations. The current effort focused on creating a computational model to compare to the results of previous tests and modeling efforts and discover new information regarding the onset of LCO. The computational model was constructed using the Cartesian overset capabilities of the CREATE-AV™ fixed wing fluid dynamics solver Kestrel. …


Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt 2019 Air Force Institute of Technology

Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt

Theses and Dissertations

Wind tunnels play an indispensable role in the process of aircraft design, providing a test bed to produce valuable, accurate data that can be extrapolated to actual flight conditions. Historically, time-averaged data has made up the bulk of wind tunnel research, but modern flight design necessitates the use of dynamic wind tunnel testing to provide time-accurate data for high frequency motion. This research explores the use of a 6 degree of freedom (DOF) motion test apparatus (MTA) in the form of a robotic arm to allow models inside a subsonic wind tunnel to track prescribed trajectories to obtain time-accurate force …


Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash 2019 The University of Western Ontario

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash

Electronic Thesis and Dissertation Repository

The aim of the present research is to understand the bouncing dynamic behavior of NEM/MEM switches in order to improve the switch performance and reliability. It is well known that the bouncing can dramatically degrade the switch performance and life; hence, in the present study, bouncing dynamics of a cantilever-based NME/MEM switch has been studied in detail. To this end, a model of a MEM switch that incorporates electrostatic force, squeeze film air damping force as well as asperity-based contact force has been proposed for an electrostatically actuated switch. An actuation force due to piezoelectric effects is further included in …


Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran 2019 University of North Florida

Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran

UNF Graduate Theses and Dissertations

The primary objective of this research is to formulate a methodology of assessing the maximum impact loading condition that will incur onto an aircraft’s landing gear system via Finite Element Analysis (FEA) and appropriately determining its corresponding structural and impact responses to minimize potential design failures during hard landing (abnormal impact) and shock absorption testing. Both static and dynamic loading condition were closely analyzed, compared, and derived through the Federal Aviation Administration’s (FAA) airworthiness regulations and empirical testing data.

In this research, a nonlinear transient dynamic analysis is developed and established via NASTRAN advanced nonlinear finite element model (FEM) to …


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski 2018 Wojciech Budzianowski Consulting Services

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Creating A Computational Tool To Simulate Vibration Control For Piezoelectric Devices, Ahmet Ozkan Ozer, Emma J. Moore 2018 Western Kentucky University

Creating A Computational Tool To Simulate Vibration Control For Piezoelectric Devices, Ahmet Ozkan Ozer, Emma J. Moore

Posters-at-the-Capitol

Piezoelectric materials have the unique ability to convert electrical energy to mechanical vibrations and vice versa. This project takes a stab to develop a reliable computational tool to simulate the vibration control of a novel “partial differential equation” model for a piezoelectric device, which is designed by integrating electric conducting piezoelectric layers constraining a viscoelastic layer to provide an active and lightweight intelligent structure. Controlling unwanted vibrations on piezoelectric devices (or harvesting energy from ambient vibrations) through piezoelectric layers has been the major focus in cutting-edge engineering applications such as ultrasonic welders and inchworms. The corresponding mathematical models for piezoelectric …


Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich 2018 Old Dominion University

Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich

Physics Faculty Publications

Proliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size. However, the stability of driven topological defects remains largely unexplored. Here we address this issue and investigate numerically …


High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti 2018 University of Massachusetts Amherst

High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti

Masters Theses

Cold spray is a unique additive manufacturing process, where a large number of ductile metal micro particles are deposited to create new surface coatings or free-standing structures. Metallic particles are accelerated through a gas stream, reaching velocities of over 1 km/s. Accelerated particles experience a high-strain-rate microscopic ballistic collisions against a target substrate. Large amounts of kinetic energy results in extreme plastic deformation of the particles and substrate. Though the cold spray process has been in use for decades, the extreme material science behind the deformation of particles has not been well understood due to experimental difficulties arising from the …


Dynamic Behavior Of Granular Earth Materials Subjected To Pressure-Shear Loading, Jeff Wilson LaJeunesse 2018 Marquette University

Dynamic Behavior Of Granular Earth Materials Subjected To Pressure-Shear Loading, Jeff Wilson Lajeunesse

Dissertations (1934 -)

The dynamic response of granular earth materials such as sand has been of interest for many years. Multiple previous works have explored the shock response of sand in various grain shapes, sizes, and moisture contents, but the response during rapid combined loading has been relatively unexplored. The current study contributes to that lack of data by performing pressure-shear experiments on Oklahoma #1 silica sand, with quasi-smooth grains of 63 - 120 micron diameter and 99.8 wt.% Si02 composition. In these experiments, an oblique flyer plate impacts an equally inclined target, imparting a longitudinal (pressure) and transverse (shear) wave into a …


A Dynamical System Approach For Resource-Constrained Mobile Robotics, Tauhidul Alam 2018 Florida International University

A Dynamical System Approach For Resource-Constrained Mobile Robotics, Tauhidul Alam

FIU Electronic Theses and Dissertations

The revolution of autonomous vehicles has led to the development of robots with abundant sensors, actuators with many degrees of freedom, high-performance computing capabilities, and high-speed communication devices. These robots use a large volume of information from sensors to solve diverse problems. However, this usually leads to a significant modeling burden as well as excessive cost and computational requirements. Furthermore, in some scenarios, sophisticated sensors may not work precisely, the real-time processing power of a robot may be inadequate, the communication among robots may be impeded by natural or adversarial conditions, or the actuation control in a robot may be …


Beauchemin Residence, Hannah E. Rogers 2018 California Polytechnic State University, San Luis Obispo

Beauchemin Residence, Hannah E. Rogers

Architectural Engineering

The following report details the structural engineering completed on the Beauchemin Residence, as well as the associated drawings, details, and special considerations. The Beauchemin Residence is an existing single story wood frame building on raised wood floor, located in the city of San Clemente. The scope of work includes calculations for a new roof, new walls (gravity & lateral), retrofit of the existing foundation, new foundation, and providing calculations. The process and progression of the structural design is documented, and correlated to the final product in the Appendix A & B.


Optimization Of Microfluidic Particle Separator Geometry Using Computational Fluid Dynamics, Joseph Petersen 2018 South Dakota State University

Optimization Of Microfluidic Particle Separator Geometry Using Computational Fluid Dynamics, Joseph Petersen

Electronic Theses and Dissertations

Computational fluid dynamics software was used to simulate the motion of circulating tumor cells in a variety of microfluidic cell isolation devices. Design of several novel microfluidic cell isolation devices was aided by viewing streamlines of fluid in devices in simulation. Devices that performed best in simulation used 5-micrometer wide guiding channels to guide cells to the capture location in the device. While these devices performed better than other devices in simulation and captured all particles regardless of position along inlet, experimental results differ from simulation.


Simulation Of Gas Dynamic Cold Spray Process, Sai Rajkumar Vadla 2018 South Dakota State University

Simulation Of Gas Dynamic Cold Spray Process, Sai Rajkumar Vadla

Electronic Theses and Dissertations

The utilization of computational fluid dynamics (CFD) as a study tool in the aerodynamics and turbomachinery industry reinforces efficiency in the design of aircraft or for understanding the flow through pipes. CFD offer tools to model different geometries and perform a more extensive study of the flow phenomena. This gives the opportunity to model a variety of geometries and analyze their behavior under different operating conditions. A similar approach can be applied to coating technologies. Coating technologies play an essential role in the manufacturing industry. Their ability to form layers of specific materials onto engineering components to enhance mechanical and …


Thermodynamics Of Coherent Structures Near Phase Transitions, Julia M. Meyer, Ivan Christov 2017 Purdue University

Thermodynamics Of Coherent Structures Near Phase Transitions, Julia M. Meyer, Ivan Christov

The Summer Undergraduate Research Fellowship (SURF) Symposium

Phase transitions within large-scale systems may be modeled by nonlinear stochastic partial differential equations in which system dynamics are captured by appropriate potentials. Coherent structures in these systems evolve randomly through time; thus, statistical behavior of these fields is of greater interest than particular system realizations. The ability to simulate and predict phase transition behavior has many applications, from material behaviors (e.g., crystallographic phase transformations and coherent movement of granular materials) to traffic congestion. Past research focused on deriving solutions to the system probability density function (PDF), which is the ground-state wave function squared. Until recently, the extent to which …


Digital Commons powered by bepress