Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,573 Full-Text Articles 3,531 Authors 420,571 Downloads 76 Institutions

All Articles in Mechanics of Materials

Faceted Search

1,573 full-text articles. Page 1 of 70.

Risk Maintenance Strategy In Blade Manufacturing Industry Machineries - By Using Applications Of Topsis Method, Poovanna Vivek Dev S, Sachin Salunkhe 2023 Department of Mechanical Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai,Tamilnadu,India

Risk Maintenance Strategy In Blade Manufacturing Industry Machineries - By Using Applications Of Topsis Method, Poovanna Vivek Dev S, Sachin Salunkhe

International Journal of Applied Research in Mechanical Engineering

Regarding the capital and operating expenses of windmill turbines, blades are amongst the most vital parts. Those blades are made using conventional manufacturing methods such as deep groove machine, CNC Machine, foam slicing machine, glass layer machine, glass layer winding machine, balsa angle cutting machine, etc. In this research, TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) method is used to sort the machining methods that need to be handled very carefully according to risk and hazard in blade production. This research objective is to find the windmill blade design data, various production processes and its hazards, risks …


Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng 2023 The University of Western Ontario

Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng

Electronic Thesis and Dissertation Repository

Featured by biocompatibility, high compliance and capacity in sustaining large deformation, dielectric elastomers (DEs) and hydrogels have gained extensive research popularity for their potential applications in the fields of soft robots, biomimetics, tissue engineering, drug delivery, and energy harvesting. The design of such soft and smart material-based devices and structures requires deep understanding and accurate simulation of their constitutive behaviors, which is challenged by their nonlinear material properties due to unique microstructures and multi-physics coupling. Meanwhile, in different application contexts, those structures are also susceptible to different failure modes, imposing further challenges in simulating and predicting their performance. To fulfill …


Influence Of Forming Forces On Torsional, Tensile, And Compressive Deformation Of Paperboard Packages, Arvo Niini, Panu Tanninen, Juha Varis, Ville Leminen 2023 Lappeenranta-Lahti University of Technology LUT, Finland

Influence Of Forming Forces On Torsional, Tensile, And Compressive Deformation Of Paperboard Packages, Arvo Niini, Panu Tanninen, Juha Varis, Ville Leminen

Journal of Applied Packaging Research

Paperboard packages were tested mechanically to investigate influence of forming forces on torsional, tensile, and compressive deformation. The packages were paperboard trays which were press formed with different pressing forces and blank holder forces. Deformation of the trays was observed with torsion, compression, and tensile tests. A statistical analysis of test results was conducted to derive optimal forming forces. Increased pressing force yielded desirable deformation characteristics with the trays. Blank holder force had largest impact on the compressive deformation. Interaction of the pressing force and the blank holder force influenced the torsional and the compressive deformation. The optimal forming forces …


The Center For Centering Dome, Olek Piechaczek, Ryan M. Scharf 2023 California Polytechnic State University, San Luis Obispo

The Center For Centering Dome, Olek Piechaczek, Ryan M. Scharf

Architectural Engineering

The Center for Centering seeks to create a large-scale healing center, conducive to individual centering of the mind and body. This mobile installation provides a relaxing, enclosed space while still maintaining a connection to the outdoors. The clients liked the idea of having a pop-up installation that could be easily set up as a touring display. With a deadline for installation looming in June 2022, a team of students had five months to design and manufacture the structure.

In winter 2022, the students developed custom geometry to minimize the number of individual parts and built a ¼ scale model of …


Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo 2023 CUNY, New York City College of Technology

Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo

Publications and Research

The goal of the current study is to investigate cutting-edge techniques for recycling filament waste from 3D printing procedures. Appropriate waste management techniques are required to reduce this trash's harmful environmental consequences. The goal of the project is to look at new methods for recycling filament waste in order to minimize disposal and encourage reuse. To acquire data from pertinent papers and research, a thorough literature review methodology was used. The findings show that this issue may be resolved utilizing a variety of recycling techniques, including shredding, melting, and re-extrusion. The type of filament waste and the intended goal will …


Machinability Of High Mn Steel Using Tool Life Criteria, Dika Handayani, Victor F. Okhuysen, Nicole Wagner 2023 California State Polytechnic University - Pomona

Machinability Of High Mn Steel Using Tool Life Criteria, Dika Handayani, Victor F. Okhuysen, Nicole Wagner

Engineering Faculty Articles and Research

High Mn steel alloys have shown to provide both high strength and ductility. However, current literature offers limited guidance on the machinability of these steel alloys. Therefore, this work provides turning recommendations for high Mn steel that is based on tool life data. Several indexable carbide inserts with various rake angles were used to machine cast billets of high Mn steel. Turning characteristics from various feed rates, cutting speeds, and depths of cut were analyzed. Through a design of experiments, it was determined that the feed rate was the most significant factor affecting tool life and that a tool with …


Enhancing Compatibility And Mechanical Properties Of Natural Rubber Composites, Krisma Yessi Sianturi, Adam Febriyanto Nugraha, Belle kristaura, Mochamad Chalid 2023 University of Indonesia

Enhancing Compatibility And Mechanical Properties Of Natural Rubber Composites, Krisma Yessi Sianturi, Adam Febriyanto Nugraha, Belle Kristaura, Mochamad Chalid

Journal of Materials Exploration and Findings (JMEF)

Pure natural rubber (NR) exhibits low mechanical properties, necessitating the incorporation of additives like vulcanizing agents and fillers. Carbon black and silica, conventional fillers, are relatively expensive and not environmentally friendly. This study explores using Oil Palm Empty Fruit Bunch (OPEFB) fiber as an affordable, abundant, and biodegradable alternative filler for NR. However, compatibility issues arise between the nonpolar NR and the polar OPEFB fiber. A latex-starch hybrid coupling agent (CA (NR-St)) was added to the composite formulation to address this. NR, OPEFB fiber, and the coupling agent were mixed using an open roll mill with a 10 phr OPEFB …


Thermal Behavior Of Plain And Fiber-Reinforced Rigid Concrete Airfield Runways, Arash Karimi Pour 2023 University of Texas at El Paso

Thermal Behavior Of Plain And Fiber-Reinforced Rigid Concrete Airfield Runways, Arash Karimi Pour

Open Access Theses & Dissertations

The environmental condition and temperature gradient are important factors resulting in concrete airfield runways cracking during the time. Rigid concrete airfield runways experience different thermal gradients during the day and night due to changes in air temperature. Curling and thermal expansion stresses are the main consequences resulting in various types of cracking over the surface and thickness of concrete airfield runways and increasing maintenance costs. The curvature of concrete slabs increases with an increase in the temperature gradient which is amplified when runways open to traffic. Additionally, the combination of the curling and shrinkage stresses, in rare circumstances, can be …


Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm 2023 Clemson University

Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm

All Dissertations

Electrically assisted manufacturing (EAM) is the direct application of an electric current to a workpiece during manufacturing. This advanced manufacturing process has been shown to produce anomalous effects which extend beyond the current state of modeling of thermal influences. These purported non-thermal effects have collectively been termed electroplastic effects (EPEs).

While there is a distinct difference in results between steady-state (ideal DC) testing and pulsed current testing, the very definition of these two EAM methods has not been well established. A "long" pulse may be considered DC current; a "short" pulse may produce electroplastic effects; and even "steady-state" current shapes …


The Effects Of Laser Shock Peening On The Fatigue Life Of Additive Manufactured Alsi10mg, Jacob L. Biddlecom 2023 Clemson University

The Effects Of Laser Shock Peening On The Fatigue Life Of Additive Manufactured Alsi10mg, Jacob L. Biddlecom

All Dissertations

Additive manufacturing (AM) is becoming a manufacturing process that is well established, even with all the resources and attention that has been brought to it, the field is still lacking some key understandings. Currently, there are certain aspects that are difficult to overcome. Some of the intrinsic obstacles include process-induced defects, such as porosity from lack of fusion and gaseous bubble entrapment, as well as complex thermal gradients. These defects can lead to altered material response especially when looking at the fatigue life. The fatigue behaviors of AM components can change from print to print as well as when compared …


Characterization Of Novel Self-Healing Polymer Blends For Additive Manufacturing, Truman James Word 2023 University of Texas at El Paso

Characterization Of Novel Self-Healing Polymer Blends For Additive Manufacturing, Truman James Word

Open Access Theses & Dissertations

This dissertation begins with an overview of novel polymer systems which have been developed by the Polymer Extrusion Lab at the University of Texas at El Paso. Many composite polymer systems have been created using many different polymers as well as ceramics and metals primarily in the form of powders added to the bulk polymer. The bulk of this work entails a study that was conducted to develop and characterize the mechanical, shape memory and self-healing properties of three polymer blends: polylactic acid (PLA) combined with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA), acrylonitrile butadiene styrene (ABS) combined with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA), and polylactic …


Development Of A Fish Robot Equipped With Novel 3d-Printed Soft Bending Actuators, Steven Steele, Jorge Diaz Rodriguez, Sharun Sripathy, Turaj Ashuri, Saleh Gharaie, Yusun Chang, Amir Ali Amiri Moghadam 2023 Deakin University, Australia

Development Of A Fish Robot Equipped With Novel 3d-Printed Soft Bending Actuators, Steven Steele, Jorge Diaz Rodriguez, Sharun Sripathy, Turaj Ashuri, Saleh Gharaie, Yusun Chang, Amir Ali Amiri Moghadam

Symposium of Student Scholars

This paper reports on design and fabrication of a novel soft fish robot. Application of soft actuators for the fish tail will generates continuum bending motion which resembles the natural motion of the fish. However, most soft actuator mechanisms are complex and have low efficiency. Thus, to address this issue we have developed a 3D printed soft bending actuator which can be actuated with an electromotor. The basic design idea of the soft bending actuator is explained, and iteration of the design showed to create the desired motion for the soft tail. The soft actuator has been successfully integrated with …


Optical Fiber Tip Micro Anemometer [U.S. Patent Us11635315b2], Hengky Chandrahalim, Jeremiah C. Williams 2023 Air Force Institute of Technology

Optical Fiber Tip Micro Anemometer [U.S. Patent Us11635315b2], Hengky Chandrahalim, Jeremiah C. Williams

Faculty Publications

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


Editorial: Disease Biomarker Analysis Based On Optical Biosensing, Tianshu Chen, Fanben Meng, Binwu Ying, Xiaoli Zhu 2023 Tongji University, Shanghai Jiao Tong University

Editorial: Disease Biomarker Analysis Based On Optical Biosensing, Tianshu Chen, Fanben Meng, Binwu Ying, Xiaoli Zhu

Mechanical & Materials Engineering Faculty Publications

Disease biomarker analysis has become a crucial tool for diagnosing and evaluating disease prognosis, especially with the increasing understanding of diseases at the molecular level. Abnormalities in various biomarkers can indicate diseased states, and can be used to rapidly and specifically detect and quantify diseases using optical biosensing techniques (Gao et al., 2023). Optical biosensing techniques have several advantages over traditional methods including higher sensitivity, specificity, and faster analysis times (Plikusiene and Ramanaviciene, 2023). It also allows for non-invasive sample collection. With advancements in optical biosensing technology, many medical conditions including cancers, infectious diseases, and autoimmune disorders can be accurately …


Microstructure-Informed Modeling Of Hydrogen Diffusion In Zirconium Polycrystals, Alireza Tondro 2023 The University of Western Ontario

Microstructure-Informed Modeling Of Hydrogen Diffusion In Zirconium Polycrystals, Alireza Tondro

Electronic Thesis and Dissertation Repository

Zirconium alloys are widely used in the core of various types of nuclear reactors. During service, the hot water coolant reacts with zirconium and releases hydrogen atoms that ingress into the lattice of the metal alloy. With time, hydrogen concentration exceeds its terminal solid solubility limit in zirconium, and a brittle phase known as zirconium hydride forms. This phase severely deteriorates the mechanical properties of zirconium alloys, leading to safety concerns regarding the integrity of nuclear pressure tubes. This thesis uses a crystal plasticity finite element model coupled with diffusion equations to study the effects of localized deformation at the …


A Threshold Helium Leakage Detection Switch With Ultra Low Power Operation, Sulaiman Mohaidat, Fadi M. Alsaleem 2023 University of Nebraska-Lincoln

A Threshold Helium Leakage Detection Switch With Ultra Low Power Operation, Sulaiman Mohaidat, Fadi M. Alsaleem

Mechanical & Materials Engineering Faculty Publications

Detecting helium leakage is important in many applications, such as in dry cask nuclear waste storage systems. This work develops a helium detection system based on the relative permittivity (dielectric constant) difference between air and helium. This difference changes the status of an electrostatic microelectromechanical system (MEMS) switch. The switch is a capacitive-based device and requires a very negligible amount of power. Exciting the switch’s electrical resonance enhances the MEMS switch sensitivity to detect low helium concentration. This work simulates two different MEMS switch configurations: a cantilever-based MEMS modeled as a single-degreefreedom model and a clamped-clamped beam MEMS molded using …


Crystalline–Amorphous Nanostructures: Microstructure, Property And Modelling, Binqiang Wei, Lin Li, Lin Shao, Jian Wang 2023 University of Nebraska-Lincoln

Crystalline–Amorphous Nanostructures: Microstructure, Property And Modelling, Binqiang Wei, Lin Li, Lin Shao, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Crystalline metals generally exhibit good deformability but low strength and poor irradiation tolerance. Amorphous materials in general display poor deformability but high strength and good irradiation tolerance. Interestingly, refining characteristic size can enhance the flow strength of crystalline metals and the deformability of amorphous materials. Thus, crystalline–amorphous nanostructures can exhibit an enhanced strength and an improved plastic flow stability. In addition, high-density interfaces can trap radiation-induced defects and accommodate free volume fluctuation. In this article, we review crystalline–amorphous nanocomposites with characteristic microstructures including nanolaminates, core–shell microstructures, and crystalline/amorphous-based dual-phase nanocomposites. The focus is put on synthesis of characteristic microstructures, deformation …


Plasmon Enhanced Quantum Properties Of Single Photon Emitters With Hybrid Hexagonal Boron Nitride Silver Nanocube Systems, Mohammadjavad Dowran, Andrew Butler, Suvechhya Lamichhane, Adam Erickson, Ufuk Kilic, Sy_Hwang Liou, Christos Argyropoulos, A. Laraoui 2023 University of Nebraska-Lincoln

Plasmon Enhanced Quantum Properties Of Single Photon Emitters With Hybrid Hexagonal Boron Nitride Silver Nanocube Systems, Mohammadjavad Dowran, Andrew Butler, Suvechhya Lamichhane, Adam Erickson, Ufuk Kilic, Sy_Hwang Liou, Christos Argyropoulos, A. Laraoui

Mechanical & Materials Engineering Faculty Publications

Hexagonal boron nitride (hBN) has emerged as a promising ultrathin host of single photon emitters (SPEs) with favorable quantum properties at room temperature, making it a highly desirable element for integrated quantum photonic networks. One major challenge of using these SPEs in such applications is their low quantum efficiency. Recent studies have reported an improvement in quantum efficiency by up to two orders of magnitude when integrating an ensemble of emitters such as boron vacancy defects in multilayered hBN flakes embedded within metallic nanocavities. However, these experiments have not been extended to SPEs and are mainly focused on multiphoton effects. …


Graphene Twistronics: Tuning The Absorption Spectrum And Achieving Metamaterial Properties, Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel 2023 Jouf University

Graphene Twistronics: Tuning The Absorption Spectrum And Achieving Metamaterial Properties, Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel

Mechanical & Materials Engineering Faculty Publications

Graphene twistronics using multilayer graphene is presented in such a way that it provides a metamaterial effect. This manuscript also analyzes the prediction of behavior using machine learning. The metamaterial effect is achieved by twisting the graphene layers. Graphene twistronics is a new concept for changing the electrical and optical properties of bilayer graphene by applying a small angle twist between the layers. The angle twists of 5o, 10o, and 15o are analyzed for the proposed graphene twistronics design. Tuning in the absorption spectrum is achieved by applying small twists to the angles of the …


Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao 2023 Virginia Polytechnical Institute

Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao

Mechanical & Materials Engineering Faculty Publications

We developed and applied a novel approach for shape agnostic detection of multiscale flaws in laser powder bed fusion (LPBF) additive manufacturing using heterogenous in-situ sensor data. Flaws in LPBF range from porosity at the micro-scale (< 100 μm), layer related inconsistencies at the meso-scale (100 μm to 1 mm) and geometry-related flaws at the macroscale (> 1 mm). Existing data-driven models are primarily focused on detecting a specific type of LPBF flaw using signals from one type of sensor. Such approaches, which are trained on data from simple cuboid and cylindrical-shaped coupons, have met limited success when used for detecting multiscale flaws in complex LPBF parts. The objective of this work is to develop a heterogenous sensor data fusion …


Digital Commons powered by bepress