Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 221

Full-Text Articles in Condensed Matter Physics

Nanoscale Thermal And Electronic Properties Of Thin Films Of Graphene And Organic Polyradicals, Sabastine Chukwuemeka Ezugwu Dec 2016

Nanoscale Thermal And Electronic Properties Of Thin Films Of Graphene And Organic Polyradicals, Sabastine Chukwuemeka Ezugwu

Electronic Thesis and Dissertation Repository

Ultrathin film materials have attracted significant attention in light of their potential applications in very large scale integrated electronics and data storage. For instance, the amount of data that can be addressed and stored in a memory device scales inversely with the thinness of the active layer of these components. In our thesis, we have developed a suite of scanning-probe and nano-optical techniques focused on understanding the electronic surface properties and the thermal conductivity of ultrathin materials. We discuss a few specific examples in which we applied these techniques towards improved performance of thin films of graphene and organic polyradicals …


How Shape Of Simulated Graphene Sheets Affects Debye Scattering Patterns, Lindsay Lesh Dec 2016

How Shape Of Simulated Graphene Sheets Affects Debye Scattering Patterns, Lindsay Lesh

Honors Projects

This research is about understanding the structure of a subset of graphitic stardust found in primitive meteorites (e.g. the Murchison meteorite). The carbon grains of interest exhibit a core-rim structure, where the core – with a density less than that of the graphitic rim – comprises the majority of the grain. Previous studies have shown that the cores are comprised primarily of unlayered graphene, and it has been hypothesized that the cores are the result of the rapid freezing (quenching) of a liquid carbon droplet. Electron diffraction is sensitive to small differences in crystal structure and simulated electron diffraction powder …


Linear Feedback Stabilization For A Continuously Monitored Qubit, Taylor Lee Patti, A. Chantasri, Justin Dressel, A. N. Jordan Dec 2016

Linear Feedback Stabilization For A Continuously Monitored Qubit, Taylor Lee Patti, A. Chantasri, Justin Dressel, A. N. Jordan

Student Scholar Symposium Abstracts and Posters

In quantum mechanics, standard or strong measurement approaches generally result in the collapse of an ensemble of wavefunctions into a stochastic mixture of eigenstates. On the other hand, continuous or weak measurements have the propensity to dynamically control the evolution of quantum states over time, guiding the trajectory of the state into non-trivial superpositions and maintaining state purity. This kind of measurement-induced state steering is of great theoretical and experimental interest for the harnessing of quantum bits or "qubits", which are the fundamental unit of the emerging quantum computer. We explore continuous measurement-based quantum state stabilization through linear feedback control …


Synthesis And Analysis Of Carbon-Transition Metal Oxide Composites, Binod Manandhar Dec 2016

Synthesis And Analysis Of Carbon-Transition Metal Oxide Composites, Binod Manandhar

Theses and Dissertations

Graphene, a two-dimensional honeycomb structure of carbon due to its high electrical and thermal conductivity, and high specific surface area, is an excellent candidate for nano-electronics and energy storage. However, it is very difficult and expensive to produce a single layered graphene by the traditional method of mechanical exfoliation of highly oriented pyrolytic graphite (HOPG). It is mainly manufactured by chemical vapor deposition (CVD) or more economically by chemical exfoliation of graphite by Hummer’s modified method. But there is a major disadvantage in using the chemical exfoliation, instead of forming single layer of pure graphene, a non-stoichiometric and insulating graphene …


Optical Spectroscopy And The Contruction Of An Optimal Wannier Basis With Application To The Development Of Ab Initio Models, Robert Gerard Van Wesep Dec 2016

Optical Spectroscopy And The Contruction Of An Optimal Wannier Basis With Application To The Development Of Ab Initio Models, Robert Gerard Van Wesep

Doctoral Dissertations

Understanding the role of local orbital degrees of freedom in the behavior of solid state systems has long been understood as a key to unraveling the mysteries presented by complex transition metal compounds. A general approach to the many-body problem is density functional theory (DFT) and its time-dependent extension (TDDFT), which provide a realistic representation of the material-dependent symmetry and chemistry of a compound. Calculation of quantities in (TD)DFT are most often performed using the basis of Bloch states, which is not natural for investigating local degrees of freedom. The Wannier basis provides localized orbitals that retain all of the …


Reconstruction Of 3d Image For Particles By The Method Of Angular Correlations From Xfel Data, Sung Soon Kim Dec 2016

Reconstruction Of 3d Image For Particles By The Method Of Angular Correlations From Xfel Data, Sung Soon Kim

Theses and Dissertations

The world’s first X-ray Free Electron Laser (XFEL), the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), is now generating X-ray pulses of unprecedented brilliance (one billion times brighter than the most powerful existing sources), and at the amazing rate of only a few femtoseconds. The first such experiments are being performed on relatively large objects such as viruses, which produce low resolution, low-noise diffraction patterns on the basis of the so called “diffraction before destruction” principle. Despite the promise of using XFEL for the determination of the structures of viruses, the results so far from …


Artificial Quantum Many-Body States In Complex Oxide Heterostructures At Two-Dimensional Limit, Xiaoran Liu Dec 2016

Artificial Quantum Many-Body States In Complex Oxide Heterostructures At Two-Dimensional Limit, Xiaoran Liu

Graduate Theses and Dissertations

As the representative family of complex oxides, transition metal oxides, where the lattice,

charge, orbital and spin degrees of freedom are tightly coupled, have been at the forefront

of condensed matter physics for decades. With the advancement of state-of-the-art heteroepitaxial deposition techniques, it has been recognized that combining these oxides on the atomic scale, the interfacial region offers great opportunities to discover emergent phenomena and tune materials' functionality. However, there still lacks general guiding principles for experimentalists, following which one can design and fabricate artificial systems on demand. The main theme of this dissertation is to devise and propose some …


Plasma Processes And Polymers Third Special Issue On Plasma And Cancer, Mounir Laroussi, Annemie Bogaerts, Nazir Barekzi Dec 2016

Plasma Processes And Polymers Third Special Issue On Plasma And Cancer, Mounir Laroussi, Annemie Bogaerts, Nazir Barekzi

Electrical & Computer Engineering Faculty Publications

(First paragraph) This issue of Plasma Processes and Polymers is the third in a series on the applications of low temperature plasma (LTP) against cancer, or “plasma oncology.” The papers in this issue are inspired from the talks given at the third International Workshop on Plasma for Cancer Treatment (IWPCT) which took place on April 11–12, 2016 in Washington, DC, USA. IWPCT is an international workshop that was created in 2014 as a venue to share cutting edge plasma oncology research. The first IWPCT was held in Washington DC, under the co-chairmanship of Prof. Mounir Laroussi (Old Dominion University) and …


Avalanche Statistics From Data With Low Time Resolution, Michael Leblanc, Aya Nawano, Wendelin J. Wright, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen Nov 2016

Avalanche Statistics From Data With Low Time Resolution, Michael Leblanc, Aya Nawano, Wendelin J. Wright, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen

Faculty Journal Articles

Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution …


Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan Nov 2016

Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan

Publications and Research

The Schrödinger theory of electrons in an external electromagnetic field can be described from the perspective of the individual electron via the ‘Quantal Newtonian’ laws (or differential virial theorems). These laws are in terms of ‘classical’ fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) In addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, …


Magnon Spin Nernst Effect In Antiferromagnets, Vladimir Zyuzin, Alexey Kovalev Nov 2016

Magnon Spin Nernst Effect In Antiferromagnets, Vladimir Zyuzin, Alexey Kovalev

Department of Physics and Astronomy: Faculty Publications

We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.


Graphene Quantum Dots Electrochemistry And Development Of Sensitive Electrochemical Biosensor [Hybrid Poster 1-B], Tyler Smith, Alexander Banaszak Nov 2016

Graphene Quantum Dots Electrochemistry And Development Of Sensitive Electrochemical Biosensor [Hybrid Poster 1-B], Tyler Smith, Alexander Banaszak

Posters-at-the-Capitol

Graphene quantum dots (GQDs) are zero-dimensional material derived from graphene derivatives with characteristics from the structure of graphene with quantum confinement and edge effects possessing unique properties. Intense research activity in GQDs is attributed to their novel physical-chemical phenomena arising from the sp2-bonded carbon core surrounded with edge functional moieties. In this work, GQDs of optimal 5-7 nm size are investigated for their fundamental electrochemical properties and use in electrochemical sensing including enzyme-based glucose biosensor. Glucose oxidase (GOx) was immobilized on GQDs modified glassy carbon (GC) and the UV-Vis absorption and fluorescence spectroscopy, electron microscopy, cyclic …


Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 1-A], Alexander Banaszak, Tyler Smith Nov 2016

Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 1-A], Alexander Banaszak, Tyler Smith

Posters-at-the-Capitol

Raman scattering signal enhancement that uses graphene as support, graphene-enhanced Raman scattering (GERS), is a recent phenomenon. It can produce clean and reproducible Raman signals of chemical molecules with significantly enhanced signal intensity in contrast to traditional surface- (SERS) and tip- enhanced Raman scattering (TERS) techniques. While enhancement in SERS and TERS arise due to the electromagnetic mechanism, GERS also relies on a chemical mechanism and therefore shows unique molecular sensitivity and selectivity. In this work, we developed graphene materials decorated with noble metal (silver and gold) nanoparticles for detection of different chemical molecules e.g. methylene blue (MB) and rhodamine …


Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa Nov 2016

Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa

USF Tampa Graduate Theses and Dissertations

Multifunctional nanocomposites are promising for a variety of applications ranging from microwave devices to biomedicine. High demand exists for magnetically tunable nanocomposite materials. My thesis focuses on synthesis and characterization of novel nanomaterials such as polymer nanocomposites (PNCs) and multi-walled carbon nanotubes (MWCNTs) with magnetic nanoparticle (NP) fillers.

Magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) NPs with controlled shape, size, and crystallinity were successfully synthesized and used as PNC fillers in a commercial polymer provided by the Rogers Corporation and poly(vinylidene fluoride). Magnetic and microwave experiments were conducted under frequencies of 1-6 GHz in the presence of …


Study Of Charge Transport Mechanism In Microbial Nanowires, Ramesh Adhikari Nov 2016

Study Of Charge Transport Mechanism In Microbial Nanowires, Ramesh Adhikari

Doctoral Dissertations

Conductivity of an individual proteinaceous filaments, called pili or microbial nanowires, produced by wild type Geobacter sulfurreducens was measured using a low-noise electrical transport technique. It was shown that the conductivity is diminished if aromatic amino acid residues are removed from the pili. It was demonstrated that the conductivity of G. sulfurreducens pili is similar to that of synthetic organic polymers and is related to the respiration rate of the bacteria. Conductivity measurements were performed on microbial nanowires produced by other species of Geobacter with a different aromatic amino acid distribution along the wire. Also, measurements on a mutated pili …


Theory Of Spin Loss At Metallic Interfaces, Kirill D. Belashchenko, Alexey Kovalev, Mark Van Schilfgaarde Nov 2016

Theory Of Spin Loss At Metallic Interfaces, Kirill D. Belashchenko, Alexey Kovalev, Mark Van Schilfgaarde

Department of Physics and Astronomy: Faculty Publications

Interfacial spin-flip scattering plays an important role in magnetoelectronic devices. Spin loss at metallic interfaces is usually quantified by matching the magnetoresistance data for multilayers to the Valet-Fert model, while treating each interface as a fictitious bulk layer whose thickness is δ times the spin-diffusion length. By employing the properly generalized circuit theory and the scattering matrix approaches, we derive the relation of the parameter δ to the spin-flip transmission and reflection probabilities at an individual interface. It is found that δ is proportional to the square root of the probability of spin-flip scattering. We calculate the spin-flip scattering probabilities …


X-Ray Characterization Of Mesophases And Phase Transitions Of Dna Analogues In Solutions, Mustafa Selcuk Yasar Nov 2016

X-Ray Characterization Of Mesophases And Phase Transitions Of Dna Analogues In Solutions, Mustafa Selcuk Yasar

Doctoral Dissertations

We think of DNA as double-stranded helices (duplex), but the polymer exists in many conformations. Several triplex and quadruplex DNA structures can be formed in laboratory settings and exist in nature. This thesis first provides a brief description of the nature of the order in arrays of duplex DNA under biologically relevant molecular crowding conditions. Then we compare the duplex DNA mesophases with the corresponding liquid crystalline phase behavior of the triplex and quadruplex DNA analogues. In particular, we focus on G-quadruplexes. Observed in the folds of guanine-rich oligonucleotides, G-quadruplex structures are based on G-quartets formed by hydrogen bonding and …


Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang Nov 2016

Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang

Doctoral Dissertations

Polymer-based semiconducting materials are promising candidates for large-scale, low-cost photovoltaic devices. To date, the efficiency of these devices has been low in part because of the challenge of optimizing molecular packing while also obtaining a bicontinuous structure with a characteristic length comparable to the exciton diffusion length of 10 to 20 nm. In this dissertation we developed an innovative evaporation-induced nanoparticle self-assembly technique, which could be an effective approach to fabricate uniform, densely packed, smooth thin films with cm-scale area from home-made P3HT nanoparticles. Unlike the previous reports of nanoparticle-based film formation, we use a mixture of two solvents so …


Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar Nov 2016

Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar

Doctoral Dissertations

The idea of sequencing a DNA based on single-file translocation of the DNA through nanopores under the action of an electric field has received much attention over the past two decades due to the societal need for low cost and high-throughput sequencing. However, due to the high speed of translocation, interrogating individual bases with an acceptable signal to noise ratio as they traverse the pore has been a major problem. Experimental facts on this phenomenon are rich and the associated phenomenology is yet to be fully understood. This thesis focuses on understanding the underlying principles of polymer translocation, with an …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Theory Of Spin Loss At Metallic Interfaces, Kirill Belashchenko, Alexey Kovalev, Mark Van Schilfgaarde Nov 2016

Theory Of Spin Loss At Metallic Interfaces, Kirill Belashchenko, Alexey Kovalev, Mark Van Schilfgaarde

Materials Research Science and Engineering Center: Faculty Publications

Interfacial spin-flip scattering plays an important role in magnetoelectronic devices. Spin loss at metallic interfaces is usually quantified by matching the magnetoresistance data for multilayers to the Valet-Fert model, while treating each interface as a fictitious bulk layer whose thickness is δ times the spin-diffusion length. By employing the properly generalized circuit theory and the scattering matrix approaches, we derive the relation of the parameter δ to the spin-flip transmission and reflection probabilities at an individual interface. It is found that δ is proportional to the square root of the probability of spin-flip scattering. We calculate the spin-flip scattering probabilities …


Plasma Deflection Test Setup For E-Sail Propulsion Concept, Allen Andersen, Jason Vaughn, Todd Schneider, Ken Wright Oct 2016

Plasma Deflection Test Setup For E-Sail Propulsion Concept, Allen Andersen, Jason Vaughn, Todd Schneider, Ken Wright

Presentations

The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe …


Space Environment Effects Of Ionizing Radiation On Seed Germination And Growth, Alex Souvall, Takuyuki Sakai, Takahiro Shimizu, Yuta Takahashi, Midori Morikawa, Shusuke Okita, Akihiro Nagata, Toshihiro Kameda, Shaunda Wenger, Jr Dennison Oct 2016

Space Environment Effects Of Ionizing Radiation On Seed Germination And Growth, Alex Souvall, Takuyuki Sakai, Takahiro Shimizu, Yuta Takahashi, Midori Morikawa, Shusuke Okita, Akihiro Nagata, Toshihiro Kameda, Shaunda Wenger, Jr Dennison

Presentations

An initial limited set of tests of germination rate and seed growth in a controlled environment have identified statistically significant differences between control samples and seed flown in a Russian LEO research flight. Most significantly, average seed germination of space borne seeds was 2 days less than the 6 days for the control seeds. Modification of the seed coat leading to enhanced rate of water uptake, as a result of radiation from the space environment or abrasion due to launch vibrations, is hypothesized to cause early germination. High school students will conduct growth tests on seeds exposed to simulated space …


High Altitude Dependence Of Ionizing Radiation From Cosmic Rays, Zack Gibson, Akihiro Nagata, Midori Morikawa, Takuyuki Sakai, Takahiro Shimizu, Yuta Takahashi, Shusuke Okita, Raul Ramirez, Alexandra Hughlett, Toshihiro Kameda, Jr Dennison Oct 2016

High Altitude Dependence Of Ionizing Radiation From Cosmic Rays, Zack Gibson, Akihiro Nagata, Midori Morikawa, Takuyuki Sakai, Takahiro Shimizu, Yuta Takahashi, Shusuke Okita, Raul Ramirez, Alexandra Hughlett, Toshihiro Kameda, Jr Dennison

Posters

The flux of ionizing radiation from cosmic background sources has been measured as a function of altitude using a compact Geiger counter aboard a high altitude balloon. The payload was developed by researchers from University of Tsukuba and flown under the auspices of the Utah State Get-Away-Special (GAS) team. Dose rate, temperature, pressure, humidity, altitude and position data were acquired during a ~4 hour flight up to an altitude of 32 km in August 2016. The altitude reached by this balloon was more than 5 times the height of that reached by Victor Hess’ experiment in 1912, which later won …


Relaxation Of Radiation Effects On The Optical Transmission Of Polymers, Alexandra Hughlett, Tyler Kippen, J. R. Dennison Oct 2016

Relaxation Of Radiation Effects On The Optical Transmission Of Polymers, Alexandra Hughlett, Tyler Kippen, J. R. Dennison

Posters

Changes in optical transmission of polymers over time were studied to determine the factors contributing to relaxation of defect states induced by intense radiation doses. Samples of low density polyethylene (LDPE), polyether ether ketone (PEEK), polypropylene (PP), and polyimide (PI) received doses up to 500 MGy from an 8 MeV electron accelerator. These doses were intended to simulate long-term exposure of common spacecraft materials in geosynchronous orbit. Features and absorption edges in ~250 nm to 1000 nm UV to IR transmission spectra can be related to energies associated with various defects previously observed in these highly disordered materials. Recent work …


Bio-Assembled Nano-Composites As High-Density Energy Storage Materials, Xixiang Zhang, Yingbang Yao Oct 2016

Bio-Assembled Nano-Composites As High-Density Energy Storage Materials, Xixiang Zhang, Yingbang Yao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Temperature Dependence Of Electrostatic Breakdown In Highly Disordered Polymers, Tyler Kippen Oct 2016

Temperature Dependence Of Electrostatic Breakdown In Highly Disordered Polymers, Tyler Kippen

Senior Theses and Projects

No abstract provided.


Piezoelectric And Dielectric Behaviour Of Odd Nylon Blends, Shilpa A. Pande Oct 2016

Piezoelectric And Dielectric Behaviour Of Odd Nylon Blends, Shilpa A. Pande

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Tuning Topological Surface States By Charge Transfer, Zhiyi Chen Sep 2016

Tuning Topological Surface States By Charge Transfer, Zhiyi Chen

Dissertations, Theses, and Capstone Projects

Three-dimensional (3D) topological insulators (TIs), Bi2Se3, Bi2Te3, Sb2Te3, are a class of materials that has non-trivial bulk band structure and metallic surface states. Access to charge transport through Dirac surface states in TIs can be challenging due to their intermixing with bulk states or non-topological two-dimensional electron gas quantum well states caused by bending of electronic bands near the surface. The band bending arises via charge transfer from surface adatoms or interfaces and, therefore, the choice of layers abutting topological surfaces is critical. Surfaces of these 3D TIs …


Evolution Of Network Architecture In A Granular Material Under Compression, Lia Papadopoulous, James G. Puckett, Karen E. Daniels, Danielle S. Bassett Sep 2016

Evolution Of Network Architecture In A Granular Material Under Compression, Lia Papadopoulous, James G. Puckett, Karen E. Daniels, Danielle S. Bassett

Physics and Astronomy Faculty Publications

As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying …