Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 211 - 221 of 221

Full-Text Articles in Condensed Matter Physics

Polarization Charge Density In Strained Graphene, Noah Wilson Jan 2016

Polarization Charge Density In Strained Graphene, Noah Wilson

Graduate College Dissertations and Theses

Graphene, the world's first truly two-dimensional material, is unique for having an electronic structure described by an effective Lorentz invariant theory. One important consequence is that the ratio or Coulomb energy to kinetic energy is a constant, depending only on conditions within the lattice rather than on the average charge density as in a typical Galilean invariant material. Given this unusual property, a natural question would be how do phenomena, such as screening of a Coulomb impurity, happen in graphene? Moreover, how does the addition of uniaxial strain enhance or diminish this behavior? Here I discuss our work to calculate …


Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister Jan 2016

Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister

Senior Projects Spring 2016

This project is comprised of a set of parallel investigations, which share the common mo- tivation of increasing the efficiency of photovoltaics. First, the reader is introduced to core concepts of photovoltaic energy conversion via a semi-classical description of the phys- ical system. Second, a key player in photovoltaic efficiency calculations, the exciton, is discussed in greater quantum mechanical detail. The reader will be taken through a nu- merical derivation of the low-energy exciton states in various geometries, including a line segment, a circle and a sphere. These numerical calculations are done using Mathematica, a computer program which, due to …


Stereographic Visualization Of Bose-Einstein Condensate Clouds To Measure The Gravitational Constant, Ed Wesley Wells Jan 2016

Stereographic Visualization Of Bose-Einstein Condensate Clouds To Measure The Gravitational Constant, Ed Wesley Wells

Electronic Theses and Dissertations

This thesis describes a set of tools that can be used for the rapid design of atom interferometer schemes suitable for measuring Newton's Universal Gravitation constant also known as "Big G". This tool set is especially applicable to Bose--Einstein--condensed systems present in NASA's Cold Atom Laboratory experiment to be deployed to the International Space Station in 2017. These tools include a method of approximating the solutions of the nonlinear Schrödinger or Gross--Pitaevskii equation (GPE) using the Lagrangian Variational Method. They also include a set of software tools for translating the approximate solutions of the GPE into images of the optical …


Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford Jan 2016

Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford

Theses and Dissertations

The work of this dissertation is centered on two non-conventional synthetic approaches to ferromagnetic nanomaterials: high-throughput experimentation (HTE) (polyol process) and continuous flow (CF) synthesis (aqueous reduction and the polyol process). HTE was performed to investigate phase control between FexCo1-x and Co3-xFexOy. Exploration of synthesis limitations based on magnetic properties was achieved by reproducing Ms=210 emu/g. Morphological control of FexCo1-x alloy was achieved by formation of linear chains using an Hext. The final study of the FexCo1-x chains used DoE to …


Electronic Structure And Stability Of Ligated Superatoms And Bimetallic Clusters, William H. Blades Jan 2016

Electronic Structure And Stability Of Ligated Superatoms And Bimetallic Clusters, William H. Blades

Theses and Dissertations

Quantum confinement in small metal clusters leads to a bunching of states into electronic shells reminiscent of shells in atoms. The addition of ligands can tune the valence electron count and electron distribution in metal clusters. A combined experimental and theoretical study of the reactivity of methanol with AlnIm clusters reveals that ligands can enhance the stability of clusters. In some cases the electronegative ligand may perturb the charge density of the metallic core generating active sites that can lead to the etching of the cluster. Also, an investigation is conducted to understand how the bonding …


Time-Resolved Photoluminescence Studies Of Point Defects In Gan, Joy Dorene Mcnamara Jan 2016

Time-Resolved Photoluminescence Studies Of Point Defects In Gan, Joy Dorene Mcnamara

Theses and Dissertations

Time-resolved photoluminescence (TRPL) measurements paired with steady-state photoluminescence (SSPL) measurements can help to determine the PL lifetime, shape and position of unresolved bands, capture coefficients, and concentrations of free electrons and defects.PL bands that are obscured in the SSPL spectra can be accurately revealed by TRPL measurements. TRPL measurements are able to show if the PL band originates from an internal transition between different states of the same defect. The main defect-related PL bands in high-purity GaN grown by hydride vapor phase epitaxy (HVPE) which have been investigated are the ultraviolet, blue, green, yellow and red luminescence bands (UVL, BL, …


Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan Jan 2016

Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan

Theses and Dissertations--Chemical and Materials Engineering

Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si …


Theoretical Investigations Of Zinc Blende And Wurtzite Semiconductor Quantum Wells On The Rotated Substrates, Igor Ivashev Jan 2016

Theoretical Investigations Of Zinc Blende And Wurtzite Semiconductor Quantum Wells On The Rotated Substrates, Igor Ivashev

Theses and Dissertations (Comprehensive)

We present a comprehensive set of computations of effective mass theory for both the Kane's parabolic band approximation and Luttinger-Kohn's valence band mixing approximation. We generalize the kp method to be able to evaluate band structures for the materials such as zincblende InGaAsN and GaAsBi compounds used in long wavelength lasers and wurtzite materials used in short wavelength lasers. We investigate methodology to study band structure of semiconductors that are grown away from natural direction. The strain influence is introduced via Bir and Pikus model. It is expected that band structure is strongly dependent on direction of crystal growth and …


The Effect Of Impurities On The Superconductivity Of Bscco-2212, John Vastola Jan 2016

The Effect Of Impurities On The Superconductivity Of Bscco-2212, John Vastola

Honors Undergraduate Theses

BSCCO-2212 is a high-temperature cuprate superconductor whose microscopic behavior is currently poorly understood. In particular, it is unclear whether its order parameter is consistent with s-wave or d-wave symmetry. It has been suggested that its order parameter might take one of several forms that are consistent with d-wave behavior. We present some calculations using the many-body theory approach to superconductivity that suggest that such order parameters would lead to a suppression of the critical temperature in the presence of impurities. Because some experiments have suggested the critical temperature of BSCCO-2212 is relatively independent of the concentration of impurities, this lends …


Electrical Control Of Chiral Phases In Electrotoroidicnanocomposites, Raymond Walter, Sergei Prokhorenko, Zhigang Gui, Yousra Nahas, Laurent Bellaiche Dec 2015

Electrical Control Of Chiral Phases In Electrotoroidicnanocomposites, Raymond Walter, Sergei Prokhorenko, Zhigang Gui, Yousra Nahas, Laurent Bellaiche

Raymond Walter

Molecular dynamics in a first-principle-based effective Hamiltonian scheme show that optical rotation of polarized light as measured by gyrotropic coefficient is maximized at room temperature for some applied DC electric field in a ferroelectric nanocomposite consisting of BaTiO3nanowires in an SrTiO3 medium that exhibits electrical vortices. Together with a phase diagram obtained from Monte Carlo simulation, this characterizes optical applications of electrical vortices.


Revisiting Galvanomagnetic Effects In Conducting Ferromagnets, Raymond Walter, Michel Viret, Surendra Singh, Laurent Bellaiche Dec 2015

Revisiting Galvanomagnetic Effects In Conducting Ferromagnets, Raymond Walter, Michel Viret, Surendra Singh, Laurent Bellaiche

Raymond Walter

The recently proposed coupling between the angular momentum density and magnetic moments is shown
to provide a straightforward alternative explanation for galvanomagnetic eects, i.e., for both anisotropic
magnetoresistance (AMR) and planar Hall eect (PHE). Such coupling naturally reproduces the general
formula associated with AMR and PHE and allows for the occurrence of so-called `negative AMR'. This
coupling also provides a unifying link between AMR, PHE and the anomalous Hall eect (AHE) since this
same coupling was previously found to give rise to AHE (Bellaiche et al 2013 Phys. Rev. B 88 161102).