Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Condensed Matter Physics

Transport Of Dirac Electrons In A Random Magnetic Field In Topological Heterostructures, Hilary M. Hurst, Dimitry K. Efimkin, Victor Galitski Jun 2016

Transport Of Dirac Electrons In A Random Magnetic Field In Topological Heterostructures, Hilary M. Hurst, Dimitry K. Efimkin, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We consider the proximity effect between Dirac states at the surface of a topological insulator and a ferromagnet with easy plane anisotropy, which is described by the XY model and undergoes a Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The surface states of the topological insulator interacting with classical magnetic fluctuations of the ferromagnet can be mapped onto the problem of Dirac fermions in a random magnetic field. However, this analogy is only partial in the presence of electron-hole asymmetry or warping of the Dirac dispersion, which results in screening of magnetic fluctuations. Scattering at magnetic fluctuations influences the behavior of the surface …


Ν = 1/2 Landau Level: Half-Empty Versus Half-Full, Ganpathy Murthy, R. Shankar Feb 2016

Ν = 1/2 Landau Level: Half-Empty Versus Half-Full, Ganpathy Murthy, R. Shankar

Physics and Astronomy Faculty Publications

We show here that an extension of the Hamiltonian theory developed by us over the years furnishes a composite fermion (CF) description of the ν = 1/2 state that is particle-hole (PH) symmetric, has a charge density that obeys the magnetic translation algebra of the lowest Landau level (LLL), and exhibits cherished ideas from highly successful wave functions, such as a neutral quasiparticle with a certain dipole moment related to its momentum. We also a provide an extension away from ν = 1/2, which has the features from ν = 1/2 and implements the PH transformation on the LLL as …