Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

University of South Carolina

Discipline
Keyword
Publication Year
File Type

Articles 151 - 180 of 278

Full-Text Articles in Physics

Disentangling Forms Of Lorentz Violation With Complementary Clock Comparison Experiments, Brett David Altschul Jan 2009

Disentangling Forms Of Lorentz Violation With Complementary Clock Comparison Experiments, Brett David Altschul

Faculty Publications

Atomic clock comparisons provide some of the most precise tests of Lorentz and CPT symmetries in the laboratory. With data from multiple such experiments using different nuclei, it is possible to constrain new regions of the parameter space for Lorentz violation. Relativistic effects in the nuclei allow us to disentangle forms of Lorentz violation which could not be separately measured in purely nonrelativistic experiments. The disentangled bounds in the neutron sectors are at the 10−28 GeV level, far better than could be obtained with any other current technique.


The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi Jan 2009

The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi

Faculty Publications

The effect of the crystallinity and the grain texturing of CoPt hard layers on exchange coupled Fe/CoPt soft/hard magnetic systems was studied using gradient thickness multilayer thin films. We have studied the hard layer structures by transmission electron microscopy and x-ray diffraction, and characterized the exchange coupling interaction through magnetization loops obtained by the magneto-optical Kerr effect measurement. We found that exchange coupling strongly depends on the crystalline characteristics of the CoPt hard layer. There is correlation between the mixture of different grain orientations of the CoPt hard layer and coupling efficiency. In particular, interlayer coupling is enhanced when there …


An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky Jan 2009

An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky

Faculty Publications

We have developed an infrared imaging setup enabling in situ infrared images to be acquired, and expanded on capabilities of an infrared imaging as a high-throughput screening technique, determination of a critical thickness of a Pd capping layer which significantly blocks infrared emission from below, enhancement of sensitivity to hydrogenation and dehydrogenation by normalizing raw infrared intensity of a Mg thin film to an inert reference, rapid and systematic screening of hydrogenation and dehydrogenation properties of a Mg–Ni composition spread covered by a thickness gradient Pd capping layer, and detection of formation of a Mg2Si phase in a …


Lorentz Violation And Alpha-Decay, Brett David Altschul Jan 2009

Lorentz Violation And Alpha-Decay, Brett David Altschul

Faculty Publications

Relating the effective Lorentz violation coefficients for composite particles to the coefficients for their constituent fields is a challenging problem. We calculate the Lorentz violation coefficients relevant to the dynamics of an α particle in terms of proton and neutron coefficients. The α-particle coefficients would lead to anisotropies in the α decays of nuclei, and because the decay process involves quantum tunneling, the effects of any Lorentz violations could be exponentially enhanced.


Coherent Control Of Nanomagnet Dynamics Via Ultrafast Spin Torque Pulses, Samir Garzon, Longfei Ye, Richard A. Webb, Thomas M. Crawford, Mark Covington, Shehzaad Kaka Nov 2008

Coherent Control Of Nanomagnet Dynamics Via Ultrafast Spin Torque Pulses, Samir Garzon, Longfei Ye, Richard A. Webb, Thomas M. Crawford, Mark Covington, Shehzaad Kaka

Faculty Publications

We demonstrate reliable manipulation of the magnetization dynamics of a precessing nanomagnet by precisely controlling the spin transfer torque on the subnanosecond time scale. Using a simple pulse shaping scheme consisting of two ultrafast spin torque pulses with variable amplitudes and delay, we demonstrate coherent control over the precessional orbits and the ability to tune the switching probability of a nanomagnet at room temperature and 77 K. Our measurements suggest that appropriately shaped spin transfer can be used to efficiently manipulate the orientation of a free layer nanomagnet, thus providing an alternative for spin torque driven spintronic devices.


Spin Memristive Systems: Spin Memory Effects In Semiconductor Spintronics, Yuriy V. Pershin Dr, M. Di Ventra Sep 2008

Spin Memristive Systems: Spin Memory Effects In Semiconductor Spintronics, Yuriy V. Pershin Dr, M. Di Ventra

Faculty Publications

Recently, in addition to the well-known resistor, capacitor, and inductor, a fourth passive circuit element, named memristor, has been identified following theoretical predictions. The model example used in such case consisted in a nanoscale system with coupled ionic and electronic transport. Here, we discuss a system whose memristive behavior is based entirely on the electron-spin degree of freedom, which allows for a more convenient control than the ionic transport in nanostructures. An analysis of time-dependent spin transport at a semiconductor/ferromagnet junction provides a direct evidence of memristive behavior. Our scheme is fundamentally different from previously discussed schemes of memristive systems …


Effective Single-Particle Order-N Scheme For The Dynamics Of Open Noninteracting Many-Body Systems, Yuriy V. Pershin Dr, Y. Dubi, M. Di Ventra Aug 2008

Effective Single-Particle Order-N Scheme For The Dynamics Of Open Noninteracting Many-Body Systems, Yuriy V. Pershin Dr, Y. Dubi, M. Di Ventra

Faculty Publications

Quantum master equations are common tools to describe the dynamics of many-body systems open to an environment. Due to the interaction with the latter, even for the case of noninteracting electrons, the computational cost to solve these equations increases exponentially with the partical number. We propose a simple scheme, which allows to study the dynamics of N noninteracting electrons taking into account both dissipation effects and Fermi statistics, with a computational cost that scales linearly with N. Our method is based on a mapping of the many-body system to a specific set of effective single-particle systems. We provide detailed …


Community Detection In Complex Networks By Dynamical Simplex Evolution, Vladimir Gudkov, V. Montealegre, S. Nussinov, Z. Nussinov Jul 2008

Community Detection In Complex Networks By Dynamical Simplex Evolution, Vladimir Gudkov, V. Montealegre, S. Nussinov, Z. Nussinov

Faculty Publications

We benchmark the dynamical simplex evolution (DSE) method with several of the currently available algorithms to detect communities in complex networks by comparing correctly identified nodes for different levels of "fuzziness" of random networks composed of well-defined communities. The potential benefits of the DSE method to detect hierarchical substructures in complex networks are discussed.


A High Resolution Neutrino Experiment In A Magnetic Field For Project-X At Fermilab, Sanjib R. Mishra, Roberto Petti, Carl Rosenfeld Jun 2008

A High Resolution Neutrino Experiment In A Magnetic Field For Project-X At Fermilab, Sanjib R. Mishra, Roberto Petti, Carl Rosenfeld

Faculty Publications

We propose a new high-resolution neutrino experiment within a dipole magnetic field, HiResMν. This experiment will run along with long-baseline neutrino oscillation experiments (LBLν) such as NOνA, a large-cavity detector at DUSEL, or a Liquid-Argon detector in the Medium-Energy (ME) configuration of the NuMI-beam. Assuming the 120 GeV Main Injector proton intensities we anticipate 140(50) million νμ (⊽μ) Charged-Current (CC) events in the fiducial volume, for 3(4)-year run with the ME (anti)neutrino beam. Alternatively, the same statistics could be collected in just 1(1.5) year with the High Energy (HE) beam configuration. …


Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li Jun 2008

Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li

Faculty Publications

Hydrogen atmosphere can significantly change the tribological behavior at diamond and diamondlike carbon (DLC) surfaces and the friction-reducing effect depends on the partial pressure of hydrogen. We combined density functional theory modeling and thermodynamic quantities to predict the equilibrium partial pressures of hydrogen at temperature T, PH2 (T), for a fully atomic hydrogen passivated diamondsurface. Above the equilibrium PH2 (T), ultralow friction can be achieved at diamond and DLC surfaces. The calculation agrees well with friction tests at various testing conditions. We also show that PH2 (T) …


Asymmetry Of Recoil Protons In Neutron Β Decay, Vladimir Gudkov Apr 2008

Asymmetry Of Recoil Protons In Neutron Β Decay, Vladimir Gudkov

Faculty Publications

A complete analysis of proton recoil asymmetry in neutron decay in the first order of radiative and recoil corrections is presented. The possible contributions from new physics are calculated in terms of low energy coupling constants, and the sensitivity of the measured asymmetry to models beyond the Standard Model are discussed.


Current-Voltage Characteristics Of Semiconductor/Ferromagnet Junctions In The Spin-Blockade Regime, Yuriy V. Pershin Dr, Massimiliano Di Ventra Feb 2008

Current-Voltage Characteristics Of Semiconductor/Ferromagnet Junctions In The Spin-Blockade Regime, Yuriy V. Pershin Dr, Massimiliano Di Ventra

Faculty Publications

It was recently predicted [Phys. Rev. B, 193301 (2007)] that spin blockade may develop at nonmagnetic semiconductor/perfect ferromagnet junctions when the electron flow is directed from the semiconductor into the ferromagnet. Here we consider current-voltage characteristics of such junctions. By taking into account the contact resistance, we demonstrate a current stabilization effect: by increasing the applied voltage, the current density through the junction saturates at a specific value. The transient behavior of the current density is also investigated. We show that an abrupt change in the applied voltage is accompanied by a spike in the current density. It is anticipated …


A Precise Measurement Of The Muon Neutrino–Nucleon Inclusive Charged Current Cross Section Off An Isoscalar Target In The Energy Range 2.5 < EV < 40 Gev By Nomad, Nomad Collaboration, Q. Wu, S. R. Mishra, A. Godley, Roberto Petti, S. Alekhin, P. Astier, D. Autiero, A. Baldisseri, M. Baldo-Ceolin, M. Banner, G. Bassompierre, K. Benslama, N. Besson, I. Bird, B. Blumenfeld, F. Bobisut, J. Bouchez, S. Boyd, A. Bueno, Et. Al. Feb 2008

A Precise Measurement Of The Muon Neutrino–Nucleon Inclusive Charged Current Cross Section Off An Isoscalar Target In The Energy Range 2.5 < EV < 40 Gev By Nomad, Nomad Collaboration, Q. Wu, S. R. Mishra, A. Godley, Roberto Petti, S. Alekhin, P. Astier, D. Autiero, A. Baldisseri, M. Baldo-Ceolin, M. Banner, G. Bassompierre, K. Benslama, N. Besson, I. Bird, B. Blumenfeld, F. Bobisut, J. Bouchez, S. Boyd, A. Bueno, Et. Al.

Faculty Publications

We present a measurement of the muon neutrino–nucleon inclusive charged current cross section, off an isoscalar target, in the neutrino energy range 2.5⩽Ev ⩽ 40GeV. The significance of this measurement is its precision, ±4% in 2.5⩽Ev ⩽ 10GeV, and ± 2.6% in 10⩽Ev ⩽ 40GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.


Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya Jan 2008

Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya

Faculty Publications

A high-throughput high-sensitivity optical technique for measuringmagnetostriction of thin-film composition-spread samples has been developed. It determines the magnetostriction by measuring the induced deflection of micromachined cantilever unimorph samples. Magnetostrictionmeasurements have been performed on as-deposited Fe–Ga and Fe–Ga–Al thin-film composition spreads. The thin-film Fe–Ga spreads display a similar compositional variation of magnetostriction as bulk. A previously undiscovered peak in magnetostriction at low Ga content was also observed and attributed to a maximum in the magnetocrystalline anisotropy. Magnetostrictive mapping of the Fe–Ga–Al ternary system reveals the possibility of substituting up to 8at.%Al in Fe70Ga30 without significant degradation of magnetostriction.


High-Throughput Screening Of Shape Memory Alloy Thin-Film Spreads Using Nanoindentation, Arpit Dwivedi, Thomas J. Wyrobek, Oden L. Warren, Jason R. Hattrick-Simpers, Olubenga O. Famodu, Ichiro Takeuchi Jan 2008

High-Throughput Screening Of Shape Memory Alloy Thin-Film Spreads Using Nanoindentation, Arpit Dwivedi, Thomas J. Wyrobek, Oden L. Warren, Jason R. Hattrick-Simpers, Olubenga O. Famodu, Ichiro Takeuchi

Faculty Publications

We have demonstrated the utility of nanoindentation as a rapid characterization tool for mapping shape memoryalloy compositions in combinatorial thin-film libraries. Nanoindentation was performed on Ni–Mn–Al ternary composition spreads. The indentation hardness and the reduced elastic modulus were mapped across a large fraction of the ternary phase diagram. The large shape memoryalloy composition region, located around the Heusler composition (Ni2MnAl), was found to display significant departure in these mechanical properties from the rest of the composition spread. In particular, the modulus and the hardness values are lower for the martensite region than those of the rest of the …


). Size Dependency Of The Elastic Modulus Of Zno Nanowires: Surface Stress Effect, Guofeng Wang, Xiaodong Li Dec 2007

). Size Dependency Of The Elastic Modulus Of Zno Nanowires: Surface Stress Effect, Guofeng Wang, Xiaodong Li

Faculty Publications

Relation between the elastic modulus and the diameter (D) of ZnOnanowires was elucidated using a model with the calculated ZnOsurface stresses as input. We predict for ZnOnanowires due to surface stress effect: (1) when D>20nm, the elastic modulus would be lower than the bulk modulus and decrease with the decreasing diameter, (2) when 20nm>D>2nm, the nanowires with a longer length and a wurtzite crystal structure could be mechanically unstable, and (3) when D<2nm, the elastic modulus would be higher than that of the bulk value and increase with a decrease in nanowire diameter.


Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li Oct 2007

Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li

Faculty Publications

Nanoindentation in conjunction with piezoresponse force microscopy was used to study domain switching and to measure the mechanical properties of individual ferroelectric domains in a tetragonal BaTiO3 single crystal. It was found that nanoindentation has induced local domain switching; the a and c domains of BaTiO3 have different elastic moduli but similar hardness.Nanoindentationmodulus mapping on the a and c domains further confirmed such difference in elasticity. Finite element modeling was used to simulate the von Mises stress and plastic strain profiles of the indentations on both a and c domains, which introduces a much higher stress level than …


Spin Blockade At Semiconductor/Ferromagnet Junctions, Yuriy V. Pershin Dr, Massimiliano Di Ventra May 2007

Spin Blockade At Semiconductor/Ferromagnet Junctions, Yuriy V. Pershin Dr, Massimiliano Di Ventra

Faculty Publications

We study theoretically extraction of spin-polarized electrons at nonmagnetic semiconductor/ferromagnet junctions. The outflow of majority-spin electrons from the semiconductor into the ferromagnet leaves a cloud of minority-spin electrons in the semiconductor region near the junction, forming a local spin-dipole configuration at the semiconductor/ferromagnet interface. This minority-spin cloud can limit the majority-spin current through the junction, creating a pronounced spin blockade at a critical current. We calculate the critical spin-blockade current in both planar and cylindrical geometries and discuss possible experimental tests of our predictions.


Optically Induced Suppression Of Spin Relaxation In Two-Dimensional Electron Systems With Rashba Interaction, Yuriy V. Pershin Dr Apr 2007

Optically Induced Suppression Of Spin Relaxation In Two-Dimensional Electron Systems With Rashba Interaction, Yuriy V. Pershin Dr

Faculty Publications

A pulsed technique for electrons in two-dimensional systems, in some ways analogous to spin echo in nuclear magnetic resonance, is discussed. We show that a sequence of optical below-band-gap pulses can be used to suppress the electron spin relaxation due to the D’yakonov-Perel’ spin relaxation mechanism. The spin relaxation time is calculated for several pulse sequences within a Monte Carlo simulation scheme. The maximum of the spin relaxation time as a function of magnitude or width of the pulses corresponds to a π pulse. It is important that even relatively distant pulses efficiently suppress spin relaxation.


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Mar 2007

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Faculty Publications

No abstract provided.


Precision In Imaging Multivariate Optical Computing, Michael N. Simcock, Michael L. Myrick Mar 2007

Precision In Imaging Multivariate Optical Computing, Michael N. Simcock, Michael L. Myrick

Faculty Publications

Multivariate optical computing (MOC) is a method of performing chemical analysis using a multilayer thin-film structure known as a multivariate optical element (MOE). Recently we have been advancing MOC for imaging problems by using an imaging MOE (IMOE) in a normal-incidence geometry and employing normalization by the 1-norm. There are several important differences between the previously described 45° and the normal-incidence imaging, one of which is the measurement precision due to photon counting. We compare this precision to 45° MOC. We also discuss how MOE models with similar values of standard errors of calibration and prediction and similar gain values …


Radiation-Induced Current In Quantum Wires With Side-Coupled Nanorings, Yuriy V. Pershin Dr, Carlo Piermarocchi Jan 2007

Radiation-Induced Current In Quantum Wires With Side-Coupled Nanorings, Yuriy V. Pershin Dr, Carlo Piermarocchi

Faculty Publications

Photocurrent generation is studied in a system composed of a quantum wire with side-coupled quantum rings. The current generation results from the interplay of the particular geometry of the system and the use of circularly polarized radiation. We study the energy-momentum conservation for optical transitions involving electrons moving forward and backwards in the wire. Due to the lack of time-reversal symmetry in the radiation, the optical transitions depend on the direction of motion of the electrons, leading to a current at zero bias voltage. The photocurrent increases with the number of rings within a wide range of physical parameters. A …


Neutron Interferometric Method To Provide Improved Constraints On Non-Newtonian Gravity At The Nanometer Scale, Geoffrey L. Greene, Vladimir Gudkov Jan 2007

Neutron Interferometric Method To Provide Improved Constraints On Non-Newtonian Gravity At The Nanometer Scale, Geoffrey L. Greene, Vladimir Gudkov

Faculty Publications

In recent years, an energetic experimental program has set quite stringent limits on a possible “non-1/r2” dependence on gravity at short length scales. This effort has been largely driven by the predictions of theories based on compactification of extra spatial dimensions. It is characteristic of many such theories that the strength and length scales of such anomalous gravity are not clearly determined from first principles. As a result, it is productive to extend the current limits the range and strength of such hypothetical interactions. As a heavy, neutral, and (almost) stable particle, the neutron provides an ideal probe …


Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt Jan 2007

Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt

Faculty Publications

A near-field room temperature scanning magnetic probe microscope has been developed using a laminated magnetoelectric sensor. The simple trilayer longitudinal-transverse mode sensor, fabricated using Metglas as the magnetostrictive layer and polyvinylidene fluoride as the piezoelectric layer, shows an ac field sensitivity of 467±3μV∕Oe in the measured frequency range of 200Hz–8kHz. The microscope was used to image a 2mm diameter ring carrying an ac current as low as 10−5A. ac fields as small as 3×10−10T have been detected.


Rapid Structural Mapping Of Ternary Metallic Alloy Systems Using The Combinatorial Approach And Cluster Analysis, C. J. Long, Jason R. Hattrick-Simpers, M. Murakami, R. C. Srivastava, I. Takeuchi, V. L. Karen, X. Li Jan 2007

Rapid Structural Mapping Of Ternary Metallic Alloy Systems Using The Combinatorial Approach And Cluster Analysis, C. J. Long, Jason R. Hattrick-Simpers, M. Murakami, R. C. Srivastava, I. Takeuchi, V. L. Karen, X. Li

Faculty Publications

We are developing a procedure for the quick identification of structural phases in thin film composition spread experiments which map large fractions of compositional phase diagrams of ternary metallic alloy systems. An in-house scanning x-ray microdiffractometer is used to obtain x-ray spectra from 273 different compositions on a single composition spread library. A cluster analysissoftware is then used to sort the spectra into groups in order to rapidly discover the distribution of phases on the ternary diagram. The most representative pattern of each group is then compared to a database of known structures to identify known phases. Using this method, …


Exafs Characterization Of Dendrimer‐Derived Pt/Γ‐Al2O3, A. Siani, Oleg S. Alexeev, Christopher T. Williams, Harry J. Ploehn, Michael D. Amiridis Jan 2007

Exafs Characterization Of Dendrimer‐Derived Pt/Γ‐Al2O3, A. Siani, Oleg S. Alexeev, Christopher T. Williams, Harry J. Ploehn, Michael D. Amiridis

Faculty Publications

The various steps involved in the preparation of a Pt/γ‐Al2O3 material using hydroxyl‐terminated generation four (G4OH) PAMAM dendrimers as templates were monitored by EXAFS. The results indicate that Cl ligands in the Pt precursors (H2PtCl6 and K2PtCl4) were partially replaced by aquo ligands upon hydrolysis to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species. After interaction of such species with G4OH, Cl ligands from the first coordination shell of Pt were further replaced by nitrogen atoms from the dendrimer interior, …


Theory Of Cavity-Polariton Self-Trapping And Optical Strain In Polymer Chains, M. V. Katkov, Yuriy V. Pershin Dr, C. Piermarocchi Dec 2006

Theory Of Cavity-Polariton Self-Trapping And Optical Strain In Polymer Chains, M. V. Katkov, Yuriy V. Pershin Dr, C. Piermarocchi

Faculty Publications

We consider a semiconductor polymer chain coupled to a single electromagnetic mode in a cavity. The excitations of the chain have a mixed exciton-photon character and are described as polaritons. Polaritons are coupled to the lattice by the deformation potential interaction and can propagate in the chain. We find that the presence of optical excitation in the polymer induces strain on the lattice. We use a BCS variational wave function to calculate the chemical potential of the polaritons as a function of their density. We analyze first the case of a short chain with only two unit cells in order …


Positive Current Correlations Associated With Super-Poissonian Shot Noise, Yuanzhen Chen, Richard A. Webb Aug 2006

Positive Current Correlations Associated With Super-Poissonian Shot Noise, Yuanzhen Chen, Richard A. Webb

Faculty Publications

We report on shot noise cross spectrum measurements in a beam splitter configuration. Electrons tunneling through potential barriers are incident on a beam splitter and scattered into two separate channels. Such a partition process introduces correlations between the fluctuations of the two currents. Our work has confirmed that the generally expected negative correlations resulted from sub-Poissonian electron sources. More interestingly, positive cross correlations associated with barriers exhibiting super-Poissonian shot noise have also been observed. We have found that both positive and negative correlations can be related to the noise properties of the electron source.


Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li Jul 2006

Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li

Faculty Publications

Nano-/micronecklaces with SiO2 beads in boron strings were synthesized by simply sublimating the desired powders in a sealed quartz tube at high temperature. The boron strings have a rectangular cross section with width varying from 80to1000nm while the SiO2 beads bear either spindle or spherical shape with a size ranging from 100nmto5μm. The spacing between the SiO2 beads is uniform in each boron string. Both the boron strings and the SiO2 beads are amorphous and free of defects. The supersaturated vapors of silicon and oxygen induced the SiO2 bead formation.


Erratum: “Terahertz Studies Of The Dielectric Response And Second-Order Phonons In A Gase Crystal” [Appl. Phys. Lett.87, 182104 (2005)], B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, K. C. Mandal Apr 2006

Erratum: “Terahertz Studies Of The Dielectric Response And Second-Order Phonons In A Gase Crystal” [Appl. Phys. Lett.87, 182104 (2005)], B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, K. C. Mandal

Faculty Publications

No abstract provided.