Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 90 of 104

Full-Text Articles in Molecular Biology

Linking Molecular, Electrical And Anatomical Properties Of Human Epileptic Brain, Shruti Bagla Jan 2014

Linking Molecular, Electrical And Anatomical Properties Of Human Epileptic Brain, Shruti Bagla

Wayne State University Dissertations

Epilepsy is a common neurological disorder of recurrent unprovoked seizures. It affects almost 1% of the world population. Although there is a wide range of anti-epileptic drugs (AEDs) available, they only treat the seizure symptoms and do not cure the disease itself. The poor role of AEDs can be attributed to the lack of knowledge of exact mechanisms and networks that produce epileptic activities in the neocortex. At present, the best cure for epilepsy is surgical removal of electrically localized epileptic brain tissue. Surgically removed brain tissue presents an excellent opportunity to discover the molecular and cellular basis of human …


Regulation Of Inositol Biosynthesis And Cellular Consequences Of Inositol Depletion: Implications For The Mechanism Of Action Of Valproate, Rania M. Deranieh Jan 2014

Regulation Of Inositol Biosynthesis And Cellular Consequences Of Inositol Depletion: Implications For The Mechanism Of Action Of Valproate, Rania M. Deranieh

Wayne State University Dissertations

Inositol is a six-carbon cyclitol that is ubiquitous in biological systems. It is a precursor for the synthesis of numerous biologically important compounds, including inositol phosphates and phosphoinositides that are essential for cell function and viability. Inositol compounds play a role in membrane formation, gene regulation, signaling, regulation of ion channels, and membrane trafficking. Furthermore, inositol regulates hundreds of genes, including those involved in the biosynthesis of inositol and phospholipids. While transcriptional regulation of inositol biosynthesis has been extensively studied and well characterized, regulation of inositol biosynthesis at the enzymatic level has not been addressed. The current study shows that …


Sex And Heterochromatin: An Investigation Of Sexual Dimorphism In Drosophila Melanogaster, Manasi S. Apte Jan 2014

Sex And Heterochromatin: An Investigation Of Sexual Dimorphism In Drosophila Melanogaster, Manasi S. Apte

Wayne State University Dissertations

Over 30% of Drosophila genome is assembled into heterochromatin. Heterochromatin is relatively gene poor, transcriptionally less active and remains condensed during interphase. Previous studies established that roX RNA and some of the Male Specific Lethal (MSL) proteins, all components of the dosage compensation complex, are required for full expression of autosomal heterochromatic genes in male flies but not in females. This was surprising since heterochromatin is generally not thought to be sexually dimorphic. The genetic basis for the regulation of sex-specific heterochromatin was completely unknown.

To determine if roX RNAs localize directly at the heterochromatic regions that they regulate, I …


Tmprss2-Erg Regulation Of Androgen Biosynthetic Enzyme Expression, Dht Synthesis, And Androgen Receptor Activation In Prostate Cancer, Katelyn Ann Powell Jan 2014

Tmprss2-Erg Regulation Of Androgen Biosynthetic Enzyme Expression, Dht Synthesis, And Androgen Receptor Activation In Prostate Cancer, Katelyn Ann Powell

Wayne State University Dissertations

Intratumoral androgen synthesis in prostate cancer (PCa) contributes to the development of castration-resistant prostate cancer (CRPC). Several enzymes responsible for androgen biosynthesis have been shown to be overexpressed in CRPC, thus, contributing to CRPC in a castrated environment. Although intratumoral androgen synthesis is thought to contribute to the development and progression of CRPC, currently little is known regarding the regulation of androgen biosynthetic enzyme gene expression in PCa. The TMPRSS2-ERG transcription factor has been shown to be present in primary PCa tumors as well as CRPC tumors. The hypothesis was investigated that TMPRSS2-ERG fusions regulate androgen biosynthetic enzyme (ABE) gene …


The Drosophila Interactions Database: Integrating The Interactome And Transcriptome, Thilakam Murali Jan 2013

The Drosophila Interactions Database: Integrating The Interactome And Transcriptome, Thilakam Murali

Wayne State University Dissertations

In this thesis I describe the integration of heterogeneous interaction data for Drosophila into DroID, the Drosophilainteractions database, making it a one-stop public resource for interaction data. I have also made it possible to filter the interaction data using gene expression data to generate context-relevant networks making DroID a one-of-a kind resource for biologists. In the two years since the upgraded DroID has been available, several studies have used the heterogeneous interaction data in DroID to advance our understanding of Drosophila biology thus validating the need for such a resource for biologists. In addition to this, I have identified …


Roles Of Neuregulin1 In Neuromuscular Junction Development, Jiajing Wang Jan 2013

Roles Of Neuregulin1 In Neuromuscular Junction Development, Jiajing Wang

Wayne State University Dissertations

Neuromuscular junction (NMJ) development is a multistep process mediated by coordinated interactions between nerve terminals, target muscles, and peri-synaptic glial cells, and thus requires reciprocal signals derived from every cell type. Neuregulin1s (NRG1s) are a family of predominantly neuronal growth and differentiation factors that are important for many aspects of nervous system development. In this thesis, both the effects of NRG1 on NMJ development and reciprocal effects of neurotrophic factors on NRG1 expression were studied as a means to define the complex regulatory communication at the NMJ. Using the chicken embryo as a model, methods were developed to study the …


Investigation Of X Chromosome Recognition: The Role Of Small Rna In Drosophila Dosage Compensation, Debashish Unnikrishnan Menon Jan 2013

Investigation Of X Chromosome Recognition: The Role Of Small Rna In Drosophila Dosage Compensation, Debashish Unnikrishnan Menon

Wayne State University Dissertations

In humans and flies, females have two X chromosomes but males have one X chromosome and one Y chromosome. This leads to a fatal imbalance in X-linked gene expression in one sex. In mammals and in the fruit fly Drosophila, modulation of X chromosome expression is critical for survival. This process is termed dosage compensation. Flies increase expression from the male X chromosome two-fold. This is achieved by the Male Specific Lethal (MSL) complex, which consists of two large, non-coding RNA on the X transcripts (roX1 and roX2) and five proteins. The roX RNAs have a critical …


Polymeric Nanocarriers And Their Oral Inhalation Formulations For The Regional Delivery Of Nucleic Acids To The Lungs, Denise Santos Conti Jan 2013

Polymeric Nanocarriers And Their Oral Inhalation Formulations For The Regional Delivery Of Nucleic Acids To The Lungs, Denise Santos Conti

Wayne State University Dissertations

Gene therapy has attracted attention in the fields of medicine, pharmacy, and bionanotechnology due to the potential for treating a large number of medically relevant diseases. Oral inhalation (OI) is a promising route for the administration of therapeutics, including small molecules and biomacromolecules, such as nucleotides, peptides, and proteins, to (locally) and through (systemically) the lungs. The use of OI is especially attractive for the delivery of nucleic acids as it provides a direct and non-invasive route for targeting the lungs. Pressurized metered-dose inhalers (pMDIs), are the most commonly used OI in treatment of lung diseases and are thus promising …


Biochemical, Structural, And Drug Design Studies Of Multi-Drug Resistant Hiv-1 Therapeutic Targets, Tamaria Grace Dewdney Jan 2013

Biochemical, Structural, And Drug Design Studies Of Multi-Drug Resistant Hiv-1 Therapeutic Targets, Tamaria Grace Dewdney

Wayne State University Dissertations

Protein point mutations acquired as a mechanism of survival against therapeutics cause structural changes that effect protein function and inhibitor binding. This work investigates the structural mechanisms that lead to multi-drug resistance to HIV-1 protease and integrase inhibitors.

Proper proteolytic processing of the HIV-1 Gag/Pol polyprotein is required for HIV infection and viral replication. This feature has made HIV-1 protease an attractive target for antiretroviral drug design for the treatment of HIV-1 infected patients, thus the development of drug resistance has arisen as a major therapeutic and drug design challenge. To understand the molecular mechanisms leading to drug resistance we …


The Transcriptional Regulation Of Flagellin-Induced Innate Protection Of The Cornea: Role Of Irf1 And Atf3, Gi Sang Yoon Jan 2013

The Transcriptional Regulation Of Flagellin-Induced Innate Protection Of The Cornea: Role Of Irf1 And Atf3, Gi Sang Yoon

Wayne State University Dissertations

Pre-exposure of the cornea to TLR5 ligand flagellin induces profound mucosal innate protection against infections by reprogramming gene expression. This study explored the flagellin-induced modifications of transcription factor expression and function, specifically of IRF1 and ATF3 in corneal epithelial cells to elucidate the transcriptional mechanisms underlying the protective function of flagellin on the cornea.

Initially we used Superarray to screen for transcription factors and identified Interferon Regulatory Factor (IRF) 1 and Activating Transcription Factor (ATF) 3 as the most drastically affected genes by flagellin pretreatment in P. aeruginosa challenged human corneal epithelial cells (CEC). However, flagellin pretreatment had opposite effects …


Acidic Pericellular Ph: Effects On Proteolysis And Gene Expression As Determined In 3d Models Of Breast Carcinoma, Jennifer M. Rothberg Jan 2013

Acidic Pericellular Ph: Effects On Proteolysis And Gene Expression As Determined In 3d Models Of Breast Carcinoma, Jennifer M. Rothberg

Wayne State University Dissertations

Among the non-cellular microenvironmental factors that contribute to malignancy of solid tumors is an acidic peritumoral pH. The first objective was to determine if an acidic extracellular pH observed in vivo (i.e., pHe 6.8) affects the activity of proteases, such as cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional cultures. At pHe 6.8 there were increases in pericellular active cysteine cathepsins and in degradation of DQ-collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of …


The Role Of Cardiolipin In Iron Homeostasis And Glutathione Metabolism, Vinay A. Patil Jan 2013

The Role Of Cardiolipin In Iron Homeostasis And Glutathione Metabolism, Vinay A. Patil

Wayne State University Dissertations

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays a critical role in mitochondrial bioenergetic functions. Inside the mitochondria, CL is a critical target of mitochondrial generated reactive oxygen species (ROS) and regulates signaling events related to apoptosis and aging. CL deficiency causes perturbation of signaling pathways outside the mitochondria, including the PKC-Slt2 cell integrity pathway and the high osmolarity glycerol (HOG) pathway, and is a key player in the cross-talk between the mitochondria and the vacuole. The importance of CL in human health is underscored by the observation that perturbation of CL …


Identification Of Transcriptional Mechanisms Downstream Of Nf1 Gene Defeciency In Malignant Peripheral Nerve Sheath Tumors, Daochun Sun Jan 2012

Identification Of Transcriptional Mechanisms Downstream Of Nf1 Gene Defeciency In Malignant Peripheral Nerve Sheath Tumors, Daochun Sun

Wayne State University Dissertations

Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that occurs in carriers of mutations in the neurofibromatosis type I gene (Nf1) as well as sporadically. Plexiform neurofibromas in NF1 patients have a significant risk of developing into MPNSTs leading to increased morbidity and mortality from this syndrome. Surgery is the primary intervention but it is not always effective due to the tendency of MPNSTs to infiltrate the surrounding tissue or grow in an inoperable location. Neurofibromin, the protein coded by the Nf1 gene, functions as a GTPase activating protein (GAP) whose mutation leads to constitutive …


Mechanistic Studies Of A Novel Ppar-Gamma Mutant That Causes Lipodystrophy And Diabetes, Olga Astapova Jan 2012

Mechanistic Studies Of A Novel Ppar-Gamma Mutant That Causes Lipodystrophy And Diabetes, Olga Astapova

Wayne State University Dissertations

PPAR-gamma is a nuclear receptor that plays a central role in metabolic regulation by regulating extensive gene expression networks in adipose, liver, skeletal muscle and many other tissues. Human PPAR-gamma mutations are rare and cause a monogenetic form of severe type II diabetes with metabolic syndrome, known as familiar partial lypodystrophy. The E157D PPAR-gamma mutant causes atypical lipodystrophy in a large Canadian kindred, presenting with multiple musculoskeletal, neurological and hematological abnormalities in addition to the classic lipodystrophy features of insulin-resistant diabetes, hypertension and dyslipidemia. This mutation is localized to the p-box of PPAR-gamma, a small region that interacts directly with …


Prevalence And Physiological Significance Of Gene Looping In Saccharomyces Cerevisiae, Banupriya Mukundan Jan 2012

Prevalence And Physiological Significance Of Gene Looping In Saccharomyces Cerevisiae, Banupriya Mukundan

Wayne State University Dissertations

My Ph.D. dissertation work is focused on studying the role of promoter-bound transcription initiation factors involved in gene looping. In this study we showed that the RNAP II subunit Rpb4 has a significant effect on termination of transcription. Gene looping is disrupted in the absence of Rpb4. Rpb4 shows a strong physical interaction with the Mediator subunit Srb5. Mediator subunit Srb5 crosslinked to the 5' and 3' ends of INO1 and CHA1 genes and is required for proper termination of transcription of these genes. Srb5 affected termination of transcription through its interaction with the CF1 complex. Srb5 interaction with the …


In Vivo Display: A Selection And Its Derivatives For Antimicrobial Peptide Lead Identification, Wesley David Colangelo Jan 2012

In Vivo Display: A Selection And Its Derivatives For Antimicrobial Peptide Lead Identification, Wesley David Colangelo

Wayne State University Dissertations

The rise of antibiotic resistance necessitates new approaches for the isolation of new antimicrobials with novel inhibitory mechanisms, bypassing the development of rapid resistance by modification of pre-existing resistance mechanisms. In response, we have developed a series of systems for the rapid isolation and identification of peptides that inhibit the growth of Escherichia coli and other bacteria, termed in vivo display (IVD).

IVD harnesses the cellular processes of E. coli for the expression of a library of random peptides at the terminus of a display protein. A library of 12-amino acid random peptide sequences was added to either the C- …


Identifying Sm22 As A Key Player In Arterial Diseases, Jianbin Shen Jan 2012

Identifying Sm22 As A Key Player In Arterial Diseases, Jianbin Shen

Wayne State University Dissertations

Background : Expression of vascular smooth muscle cell (VSMC) cytoskeleton markers including SM22 is down-regulated in arterial diseases including atherosclerosis where inflammation and osteochondrogenesis are present. However, the role of this downregulation in arterial pathogenesis is unknown. Hypothesis : Downregulation of SM22 may actively contribute to arterial pathogenesis. Methods : Five Sm22 knockout (Sm22-/-) mice and their wild type littermates were subjected to carotid artery denudation, an artery injury model. Analyses were conducted on carotid arteries 2 weeks after injury. Primary VSMCs were isolated from mouse aortas and investigated individually at passage 2 to 4. Sm22 knockdown was …


Identification Of Cellular Functions Of Cardiolipin As Physiological Modifiers Of Barth Syndrome, Amit Shridhar Joshi Jan 2012

Identification Of Cellular Functions Of Cardiolipin As Physiological Modifiers Of Barth Syndrome, Amit Shridhar Joshi

Wayne State University Dissertations

Cardiolipin (CL) is an anionic phospholipid synthesized in the mitochondrial inner membrane. Perturbation of CL metabolism leads to Barth syndrome (BTHS), a life threatening genetic disorder. I utilized genetic, biochemical and cell biological approaches in yeast to elucidate the cellular functions of CL. Understanding the functions of CL is expected to shed light on the pathology and possible treatments for BTHS.

BTHS is caused by mutations in TAZ1, which encodes a CL remodeling enzyme called tafazzin. BTHS patients exhibit a wide range of clinical presentations, indicating that physiological modifiers influence the BTHS phenotype. A targeted synthetic lethality screen was performed …


Genetic And Biochemical Studies Of Human Apobec Family Of Proteins, Priyanga Wijesinghe Jan 2012

Genetic And Biochemical Studies Of Human Apobec Family Of Proteins, Priyanga Wijesinghe

Wayne State University Dissertations

The AID/APOBEC family of proteins in higher vertebrates converts cytosines in DNA or RNA into uracil. These proteins have essential roles in either innate immunity or adaptive immunity. Recently, AID has also been implicated in DNA demethylation in the context of early embryogenesis in mammals. This is partly based on the reported ability of AID to deaminate 5-methyl cytosine to thymine (5mC to T). I reexamined this proposed new role of AID (5mC deamination) with two members of the APOBEC family in a novel Escherichia coli based genetic system. My results confirmed that while all three enzymes are strong cytosine …


Hdm2 Small-Molecule Inhibitors For Therapeutic Intervention In B-Cell Lymphoma, Angela Sosin Jan 2012

Hdm2 Small-Molecule Inhibitors For Therapeutic Intervention In B-Cell Lymphoma, Angela Sosin

Wayne State University Dissertations

Lymphomas frequently retain wild-type (wt) p53 function but overexpress HDM2, compromising p53 activity. Therefore, lymphoma is a suitable model for studying therapeutic value of disrupting HDM2-p53 association by small-molecule inhibitors (SMIs). HDM2 SMIs have been developed and are currently under various stages of preclinical and clinical investigation. This study examined various molecular mechanisms associated and biological effects of two different classes of HDM2 SMIs: the spiro-oxindoles (MI-219) and cis-imidazoline (Nutlin-3) in lymphoma cell lines and patient-derived B-lymphoma cells. Surprisingly, results revealed significant quantitative and qualitative differences between these two agents. At the molecular level, effect of Nutlin-3 was generally more …


Cardiac Calsequestrin Phosphorylation And Trafficking In The Mammalian Cardiomyocyte, Timothy Mcfarland Jan 2011

Cardiac Calsequestrin Phosphorylation And Trafficking In The Mammalian Cardiomyocyte, Timothy Mcfarland

Wayne State University Dissertations

Cardiac CSQ (CSQ2) is a multifaceted protein, capable of binding significant quantities of Ca2+ and altering ryanodine receptor activity at the junctional sarcoplasmic reticulum (SR). Little is known about the trafficking of CSQ2 from its unknown site of biosynthesis, which appears to be of importance as its structure changes in a trafficking-dependent manner in various types of heart failure. Through the use of multiple antibodies specific to classic rough ER markers, and with the creation of CSQ-DsRed tetramer fusion protein, we were able to establish a juxtanuclear localization of rough ER in cardiomyocytes. Using fluorescence confocal microscopy, the translocon complex …


Hedgehog Signaling: A Potential Therapeutic Target For Non-Small Cell Lung Cancer, Ma'in Yehya Maitah Jan 2011

Hedgehog Signaling: A Potential Therapeutic Target For Non-Small Cell Lung Cancer, Ma'in Yehya Maitah

Wayne State University Dissertations

The American Cancer Society estimated that 222,520 Americans were diagnosed with lung cancer and 157,300 died of lung cancer in 2010 (Jemal et al. 2009, 225-249;Jemal et al. 2011, 69-90). The clinical outcome of patients diagnosed with non-small cell lung cancer (NSCLC), the major lung cancer sub-types, is very poor, which calls for innovative research for finding novel therapeutic targets and agents for better treatment outcome.

Emerging evidences have suggested that a phenomenon called Epithelial-to-Mesenchymal Transition (EMT), which shares similar molecular characteristics with cancer stem-like cells, contributes to lung cancer treatment failure. In view of the fact that EMT process …


Molecular Details Of The Mitochondrial Iron Sulfur Cluster Assembly Pathway, Swati Rawat Jan 2011

Molecular Details Of The Mitochondrial Iron Sulfur Cluster Assembly Pathway, Swati Rawat

Wayne State University Dissertations

MOLECULAR DETAILS OF THE MITOCHONDRIAL IRON SULFUR CLUSTER ASSEMBLY PATHWAY

Iron-sulfur clusters are an important class of prosthetic group involved in electron transfer, enzyme catalysis, and regulation of gene expression. Their biosynthesis requires complex machinery located within the mitochondrion since free iron and sulfide are extremely toxic to the cell. Defects in this pathway results in several diseases such as Friedreich's Ataxia (FRDA), Sideroblastic Anemia and ISCU Myopathy. Therefore molecular details of the biogenesis pathway will provide deep insight in the pathway and treatment options for these diseases. FRDA is caused by deficiency of a single protein called as `Frataxin'. …


Characterization Of Splicing Mechanisms By Single-Molecule Fluorescence, Krishanthi Sanjeewani Karunatilaka Jan 2011

Characterization Of Splicing Mechanisms By Single-Molecule Fluorescence, Krishanthi Sanjeewani Karunatilaka

Wayne State University Dissertations

Group II introns rank amongst the largest self-splicing ribozymes found in bacteria and organellar genomes of various eukaryotes. Despite the diversity in primary sequences, group II introns posses highly conserved secondary structures consisting of six domains (D1-D6). To perform its function, the large multidomain group II intron RNA must adopt the correctly folded structure. As a result, in vitro splicing of these introns requires high ionic strength and elevated temperatures. In vivo, this process is mainly assisted by protein cofactors. However, the exact mechanism of protein-mediated splicing of group II intron RNA is still not known.

In order to …


Identification Of The Role Of The Sal Locus In Streptococcus Pyogenes Virulence During Host-Pathogen Interactions, Phanramphoei Namprachan-Frantz Jan 2011

Identification Of The Role Of The Sal Locus In Streptococcus Pyogenes Virulence During Host-Pathogen Interactions, Phanramphoei Namprachan-Frantz

Wayne State University Dissertations

The pathogenesis of Streptococcus pyogenes is due to its ability to overcome and adapt to the harsh environment created by the host immune response. The focus of this project was the SalKR two-component regulatory system, which facilitates bacterial adaptation by responding to environmental signals during host pathogen-interactions. The first goal of this project was to determine a role in virulence for the SalKR regulatory system. The complete deletion of the salKR genes in the wild type S. pyogenes strain HSC5 produced a highly attenuated mutant in a Zebrafish infection model. The ΔsalKR mutant appeared to lose the ability to survive …


Molecular Mechanisms Of Snare Assembly And Expulsion Of Intravesicular Contents In Cell Secretion, Leah Jiyoung Zhang Jan 2011

Molecular Mechanisms Of Snare Assembly And Expulsion Of Intravesicular Contents In Cell Secretion, Leah Jiyoung Zhang

Wayne State University Dissertations

For nearly half a century, it was believed that during cell secretion, membrane-bound secretory vesicles completely merge at the cell plasma membrane resulting in the diffusion of intra-vesicular contents to the cell exterior and the compensatory retrieval of the excess membrane by endocytosis. This explanation made no sense or logic, since following cell secretion partially empty vesicles accumulate as demonstrated in electron micrographs. Furthermore, with the `all or none' mechanism of cell secretion by complete merger of secretory vesicle membrane at the cell plasma membrane, the cell is left with little regulation and control of the amount of content release. …


Rox1 Function In Dosage Compensation: Structural / Functional Analysis Of A Non-Coding Rna, Ying Kong Jan 2011

Rox1 Function In Dosage Compensation: Structural / Functional Analysis Of A Non-Coding Rna, Ying Kong

Wayne State University Dissertations

roX1 is a long non-coding RNA involved in the chromosome-wide gene regulation that occurs during dosage compensation in Drosophila. Dosage compensation in Drosophila melanogaster occurs by a global two-fold increase of transcription from the single male X chromosome. This essential process compensates for X chromosome monosomy. The male-specific lethal (MSL) complex, containing five proteins, localizes to the male X chromosome and alters chromatin to modify gene expression. roX1 and roX2 RNAs are redundant components of MSL complex that are required for its exclusive X-localization. Recent studies in our lab have revealed a second role of roX RNAs in heterochromatic gene …


Human Trophoblast Survival And Invasion In The Developing Placenta: Autocrine Regulation By Hbegf, Philip Jessmon Jan 2011

Human Trophoblast Survival And Invasion In The Developing Placenta: Autocrine Regulation By Hbegf, Philip Jessmon

Wayne State University Dissertations

HBEGF is a multifunctional protein in early pregnancy that induces cytotrophoblast (CTB) cell differentiation to an invasive phenotype, protects against apoptosis, and is involved in an autocrine signaling mechanism that leads to its own protein synthesis. CTBs exist in a low O2 environment during the first 10 weeks of implantation, during which they invade the decidualized uterine stroma. Inhibitors of intracellular signaling pathways demonstrated that at 20% O2 HBEGF induces an increase in cell migration through the ERK, MAPK14, JNK, or PIK3 pathways downstream of signaling through its ERBB receptors. Also downstream of these four pathways, HBEGF induces …


Palmitoylation And The Yeast Casein Kinase Yck2, Irene Papanayotou Jan 2011

Palmitoylation And The Yeast Casein Kinase Yck2, Irene Papanayotou

Wayne State University Dissertations

Palmitoylation is a post-translational lipid modification that allows proteins to interact with membranes. In the yeast Saccharomyces cerevisiae, the casein kinase Yck2 is palmitoylated twice at its two C-terminal palmitoyl-accepting cysteine residues, by the palmitoyl-transferring enzyme Akr1. Once palmitoylated, Yck2 traffics through the well characterized secretory pathway to the plasma membrane where it participates in many cellular functions, including bud morphogenesis, cytokinesis, nutrient sensing, and receptor internalization. While the hydrophilic Yck2 is presumably synthesized on cytosolic ribosomes, it gains access to the membrane system by interaction with the six transmembrane-spanning Golgi-localized Akr1. Since palmitoylation occurs at membranes and the palmitoyl-transferases …


Amphiregulin (Areg) And Epidermal Growth Factor (Egf): Disparate In Egfr Signaling And Trafficking, Andrea Jacqueline Baillo Jan 2011

Amphiregulin (Areg) And Epidermal Growth Factor (Egf): Disparate In Egfr Signaling And Trafficking, Andrea Jacqueline Baillo

Wayne State University Dissertations

We have previously shown that SUM-149 human breast cancer cells require an AREG/EGFR autocrine loop for cell proliferation. We also demonstrated that AREG can increase EGFR stability and promote EGFR localization to the plasma membrane. In the presented dissertation we successfully knocked-down AREG expression in SUM-149 cells by lenti-viral infection of AREG shRNA. In the absence of AREG expression, SUM-149 cell growth was slowed, but not completely inhibited. Furthermore, cells infected with AREG shRNA constructs showed an increase in EGFR protein expression by western blot. Immunofluorescence and confocal microscopy showed that following AREG knock-down, EGFR continued to localize to the …