Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses and Dissertations

Air Force Institute of Technology

Discipline
Keyword
Publication Year

Articles 1 - 30 of 103

Full-Text Articles in Mechanical Engineering

Additive Manufacturing Of Molybdenum For High Temperature Structural Applications, Megan L. Bustin Sep 2022

Additive Manufacturing Of Molybdenum For High Temperature Structural Applications, Megan L. Bustin

Theses and Dissertations

This research considered additive manufactured (AM) molybdenum (Mo) and the effect of three variables on microstructure, mechanical properties, and the relationship between the two. Test temperature, laser speed, and shield gas or build atmosphere were varied, and samples tested and analyzed using a three-point bending test, chemical composition, and optical and scanning electron microscopy. The relationship among variables and results using a Design of Experiments was limited compared to the inclusion of every tested sample. Most effects were expected: samples tested at room temperature were brittle without statistical significance; increasing laser speed resulted in decreased ductility and strain, smaller grain …


Investigation Of Additively Manufactured Molybdenum-Tungsten-Rhenium Alloys, Randolph T. Abaya Mar 2022

Investigation Of Additively Manufactured Molybdenum-Tungsten-Rhenium Alloys, Randolph T. Abaya

Theses and Dissertations

The process of creating metal components through additive manufacturing is changing the way different industries can avoid the shortcomings of traditional metal production. Metals such as tungsten, molybdenum, and rhenium have many advantages for different applications, especially when alloyed together. In this study, an additively manufactured alloy containing 70% molybdenum, 25% tungsten, and 5% rhenium (70Mo-25W-5Re) is tested for its strength, ductility, hardness, and porosity. The 70Mo-25W-5Re alloy is printed through Laser Powder Bed Fusion (LPBF) under different conditions such as printing speed and printing atmosphere. Additionally, the effects of post printing heat treatment are conducted to understand the advantages …


Simultaneous Actuation And Sensing Of Electrostatic Mems, Jacob E. Song Mar 2022

Simultaneous Actuation And Sensing Of Electrostatic Mems, Jacob E. Song

Theses and Dissertations

Micro-Electro-Mechanical Systems (MEMS) are devices that play important roles of sensing and actuation in many different industries including automation, electronics, medical, communications, and defense. In order to make full use of these devices, it is important to understand the peripherals that enable these devices. Simultaneous actuation and control of MEMS devices is an important area of research as it enables feedback control of these device and allows devices to maintain performance as devices depreciate over their lifetime. The aim of this thesis is to perform a design space analysis on an electrostatic MEMS simultaneous actuation and sensing circuit that is …


Effects Of A Nitrogen And Hydrogen Build Atmosphere On The Properties Of Additively Manufactured Tungsten, Dana C. Madsen Mar 2022

Effects Of A Nitrogen And Hydrogen Build Atmosphere On The Properties Of Additively Manufactured Tungsten, Dana C. Madsen

Theses and Dissertations

Additively manufactured tungsten was printed in pure nitrogen, nitrogen-2.5% hydrogen, and nitrogen-5% hydrogen atmospheres as part of a 2^3 full factorial designed experiment and subjected to room temperature and high-temperature three-point-bend testing, chemical analysis, hardness testing, and microstructural imaging techniques. The pure nitrogen specimens exhibited the highest strength and ductility at both high temperature and room temperature. Chemical analysis showed a 2-8x reduction in compositional oxygen relative to unprocessed powder. Hardness values for all samples was between 306.8 and 361.5 HV1. It is proposed that adding hydrogen into the build atmosphere reduced the available energy density for tungsten melting by …


Injection Studies On A Small-Scale Rotating Detonation Engine With Improved Flow Control, Jonathan J. Wyatt Dec 2021

Injection Studies On A Small-Scale Rotating Detonation Engine With Improved Flow Control, Jonathan J. Wyatt

Theses and Dissertations

The Rotating Detonation Engine (RDE) has gained increasing attention in recent years for its potential advantages over typical deflagration combustion. A Micro-RDE design with an outer diameter of 28mm operating on Nitrous Oxide and Ethylene was recently developed, which stretched the limits of small-scale detonation engines. The testing on this rig has shown a stable one wave mode detonation with frequencies reaching 16.8 kHz. Key parameters that influence the detonation wave mode are cell size, fill height, and wave speed, which are heavily influence d by injection schemes. Previous testing utilized a partially premixed jets in crossflow (JIC) injection scheme, …


Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh Jun 2021

Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh

Theses and Dissertations

Piezoelectric contour mode resonator technology has the unique advantage of combining low motional resistance with the ability to define multiple frequencies on the same substrate. Contour mode resonators can be mechanically coupled together to form robust band-pass filters for the next generation of GPS satellites with extreme size reduction compared to electrically coupled filters. Piezoelectric zinc oxide (ZnO) contour mode resonators have the potential for monolithic integration with current ZnO transistor further reducing size, power consumption, and cost of filter modules. Barium strontium titanate (BST) contour mode resonators have incredible frequency tunability due to the fundamental nature of the thin …


Robust Scandium Aluminum Nitride Mems Resonators For L Band Operation In Orbital Environments, Israel W. Dunk Mar 2021

Robust Scandium Aluminum Nitride Mems Resonators For L Band Operation In Orbital Environments, Israel W. Dunk

Theses and Dissertations

This thesis investigates AlN alloyed with scandium in a variety of resonator architectures including WEM, overtone WEM, LEM, and SAW that have the potential to achieve high levels of electrical performance and environmental robustness. SAW resonators operating near 370 MHz are fabricated on polycrystalline Sc.37Al.63N, and AlN with the resulting devices compared and conclusions drawn as to the merits of each material. The design and fabrication of SAW devices is discussed in detail, with the operating characteristics of these resonators then tested both electrically and mechanically. Mechanical characterisation includes analysis of vibration and shock effects on …


Characterization Of Reactive Ion Etch Chemistries Using Direct Write Lithography, Dylan T. Martin-Abood Mar 2020

Characterization Of Reactive Ion Etch Chemistries Using Direct Write Lithography, Dylan T. Martin-Abood

Theses and Dissertations

The DoD requires a variety of COTS and number of custom microelectronics to provide important functionality to critical military systems. Photolithography and DRIE are two techniques commonly used in the development of deep anisotropic features for the fabrication and modification of microelectronics and MEMS. However, standard photolithography techniques are ineffective for unique substrate geometries and DRIE processes require a chemical passivation step only applicable to Si substrates. This work confirmed the capability of RIE using DWL to perform deep, highly selective, anisotropic etching on elevated, non-circular substrates.


Effects Of High Freestream Turbulence And Conduction On Film Cooling Effectiveness Of Shaped Holes, Richard A. Macias Jr. Mar 2020

Effects Of High Freestream Turbulence And Conduction On Film Cooling Effectiveness Of Shaped Holes, Richard A. Macias Jr.

Theses and Dissertations

With technological advancements allowing higher turbine temperatures, film cooling continues to be an important research area. The Film Cooling Rig (FCR) was fitted with a turbulence generator to vary freestream turbulence intensity and length scale, enabling the effects of high freestream turbulence on overall effectiveness to be studied. A cylindrical hole and laidback fan-shaped hole were investigated over a range of Advective Capacity Ratio (ACR) for freestream turbulence intensities of 2%, 10%, and 15%. For a given ACR, increasing the turbulence intensity resulted in lower overall effectiveness values due to the larger heat transfer coefficient that comes from turbulent ow. …


Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny Mar 2020

Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny

Theses and Dissertations

Ultra Compact Combustors are a novel approach to modern gas turbine combustor designs that look to reduce the overall combustor length and weight. A previous study integrated an Ultra Compact Combustor into a JetCat P90 RXi turbine engine and achieved self-sustained operation with a length savings of 33% relative to the stock combustor. However, that combustor could not operate across the full stock engine performance range due to flameout at increased mass ow rates as reactions were pushed out of the primary zone. To ensure reactions stayed in the primary zone, a new design with a larger combustor volume was …


Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan Mar 2020

Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan

Theses and Dissertations

Radial Rotating Detonation Engines (RRDE) have provided an opportunity for use of a pressure-gain combustor in a more compact form compared to an axial RDE. A successfully tested RRDE has operated over a wide range of test conditions and produced detonation modes with one, two, and three waves. The presence of multiple waves located the detonation waves to the outer radius, while one wave modes operated closer to the inner radius. Locating the detonation wave closer to the inner diameter resulted in less time for combustion prior to the radial turbine. Subsequently, this tended to decrease efficiency. To attempt to …


Micro-Contacts With 3-D Surfaces Made With Grayscale Lithography, Paul L.J. Michaud Mar 2019

Micro-Contacts With 3-D Surfaces Made With Grayscale Lithography, Paul L.J. Michaud

Theses and Dissertations

MEMS switches show advantages over FET transistors and PIN diodes for switching applications due to low contact resistance, high linearity, low power use, better isolation and lower insertion loss. The switches have not replaced FETs or PIN diodes due to perceived limitations in their reliability and the need for stable contact resistance. In order to create switches acceptable for industry applications, research on micro-contact physics and failure mechanisms of micro-contacts is necessary to develop durable contact surfaces. The aim of this research was to design and fabricate micro-contacts with three-dimensional surfaces using grayscale lithography. The goal was to create devices …


Event-Based Visual-Inertial Odometry On A Fixed-Wing Unmanned Aerial Vehicle, Kaleb J. Nelson Mar 2019

Event-Based Visual-Inertial Odometry On A Fixed-Wing Unmanned Aerial Vehicle, Kaleb J. Nelson

Theses and Dissertations

Event-based cameras are a new type of visual sensor that operate under a unique paradigm. These cameras provide asynchronous data on the log-level changes in light intensity for individual pixels, independent of other pixels' measurements. Through the hardware-level approach to change detection, these cameras can achieve microsecond fidelity, millisecond latency, ultra-wide dynamic range, and all with very low power requirements. The advantages provided by event-based cameras make them excellent candidates for visual odometry (VO) for unmanned aerial vehicle (UAV) navigation. This document presents the research and implementation of an event-based visual inertial odometry (EVIO) pipeline, which estimates a vehicle's 6-degrees-of-freedom …


A Mems Dual Vertical Electrometer And Electric Field-Mill, George C. Underwood Mar 2019

A Mems Dual Vertical Electrometer And Electric Field-Mill, George C. Underwood

Theses and Dissertations

Presented is the first iteration of a Microelectromechanical System (MEMS) dual vertical electrometer and electric field-mill (EFM). The device uses a resonating structure as a variable capacitor that converts the presence of a charge or field into an electric signal. Previous MEMS electrometers are lateral electrometers with laterally spaced electrodes that resonate tangentially with respect to each other. Vertical electrometers, as the name suggests, have vertically spaced electrodes that resonate transversely with respect to each other. The non-tangential movement reduces damping in the system. Both types demonstrate comparable performance, but the vertical electrometer does so at a fraction of the …


Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller Mar 2019

Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller

Theses and Dissertations

Recent progress has been made in demonstrating Radial Rotating Detonation Engine (RRDE) technology for use in a compact Auxiliary Power Unit with a rapid response time. Investigation of RRDEs also suggests an increase in stable operating range, which is hypothesized to be due to the additional degree of freedom in the radial direction which the detonation wave can propagate. This investigation seeks to determine if the detonation wave is in fact changing its radial location. High speed photography was used to capture chemiluminescence of the detonation wave within the channel to examine its radial location, which was found to vary …


Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack Mar 2019

Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack

Theses and Dissertations

The Ultra Compact Combustor (UCC) promises to greatly reduce the size of a gas turbine engine’s combustor by altering the manner in which fuel is burnt. Differing from the common axial flow combustor, the UCC utilizes a rotating flow, coaxial to the engine’s primary axis, in an outboard circumferential cavity as the primary combustion zone. The present study investigates two key UCC facets required to further this combustor design. The first area of investigation is cooling of the Hybrid Guide Vane (HGV). This UCC specific hardware acts as a combustor center body that alters the exit flow angle and acts …


Fracture Toughness And Fatigue Crack Growth Rate Characterization Of Inconel 718 Formed By Laser Powder Bed Fusion, Charles C. Hohnbaum Mar 2019

Fracture Toughness And Fatigue Crack Growth Rate Characterization Of Inconel 718 Formed By Laser Powder Bed Fusion, Charles C. Hohnbaum

Theses and Dissertations

Continuing improvement in the field of AM of metals provides the opportunity for direct fabrication of aerospace parts. AM was once used in large part for rapid prototyping but improvements in technology and increases in the knowledge base of AM materials has provided the opportunity for manufacture of AM parts for operational use. The ability to create low numbers of unique parts without having to invest in expensive tooling provides great economic incentive to utilize this technique. IN718 is the most common high temperature alloy used in the aerospace industry and lends itself readily to formation by LPBF. The superior …


Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager Mar 2019

Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager

Theses and Dissertations

The manufacture of components in Additive Manufacturing processes is limited by the range of materials available. Qualification of materials for Additive Manufacturing is time intensive, and is often specific to a single type of machine. In this study, an approach to selecting power, speed, and hatch spacing values for a newly powderized material, AF9628 weapons steel, is described that results in highly dense (>99.9%) parts on an MLab 200R Cusing. Initial power and speed values used in a weld track study were selected based on a survey of parameters used on similar materials, with a focus on the energy …


Combustion Dynamics And Heat Transfer In An Ultra Compact Combustor, Brian T. Bohan Sep 2018

Combustion Dynamics And Heat Transfer In An Ultra Compact Combustor, Brian T. Bohan

Theses and Dissertations

The Ultra Compact Combustor (UCC) is an innovative combustion system alternative to a traditional turbine engine burner with the potential to improve engine efficiency with a reduced combustor volume. The UCC shortens the axial length of the combustor, and therefore reduces engine weight, by burning in an annulus and swirling the reactants in the circumferential direction. These length and weight improvements can directly lead to an increased thrust-to-weight rating of the engine. The present research included five objectives which advanced the UCC concept on four fronts; cooling UCC turbine vanes, advanced computational modeling of UCC systems, system air split control …


Evaluation Of High Velocity Wear, Armando Deleon Mar 2018

Evaluation Of High Velocity Wear, Armando Deleon

Theses and Dissertations

The HHSTT located at Holloman Air Force Base conducts hypersonic testing in a unique way. Rather than perform cost prohibitive flight testing or hypersonic wind tunnel testing, a rocket-powered sled propels test articles down a track. This test setup has been used to test at speeds up to 2885 m/s (~Mach 8.6). The sled is kept on the rails by utilizing slippers, fabricated to wrap around the rail [1]. This slipper design keeps the sled from separating from the rail during a test due to the airflow producing lift, in a designed effort to minimize the wear that occurs during …


Computational Investigation Using Bleed As A Method Of Shock Stabilization, Dayle L. Chang Mar 2018

Computational Investigation Using Bleed As A Method Of Shock Stabilization, Dayle L. Chang

Theses and Dissertations

Shock-wave/boundary layer interactions (SWBLI) produce undesirable dynamic loads and separated unsteady flows, adversely impacting the performance and structural integrity of supersonic vehicles. Computational fluid dynamics (CFD) is a successful tool in experimental planning and shows promise as a critical tool in understanding and mitigating negative effects of SWBLI. The goal of this research is to demonstrate the effect of bleed holes on shock stability using the OVERFLOW CFD solver to inform the planning of an Air Force Research Laboratory (AFRL) SWBLI wind tunnel experiment. First, a two-dimensional, flat plate, single-hole configuration was developed. Massflow discrepancies of 14.8% were initially observed …


Flow Field Dynamics In A High-G Ultra-Compact Combustor, Andrew E. Cottle Dec 2016

Flow Field Dynamics In A High-G Ultra-Compact Combustor, Andrew E. Cottle

Theses and Dissertations

The Ultra Compact Combustor (UCC) presents a novel solution to the advancement of aircraft gas turbine engine performance. A high-g UCC design operates by diverting a portion of the axial compressor flow into a circumferential combustion cavity positioned about the engine outer diameter. The circumferential cavity (CC) provides the necessary residence length and time for combustion within reduced axial lengths; furthermore, high rates of centrifugal acceleration termed high-g loading are imposed upon the swirling cavity flow. These high-g conditions are hypothesized to increase flame speed, reduce flame length, and improve lean blow-out performance. Work at AFIT was sponsored by the …


Investigation Of Thermal Scaling Effects For A Turbine Blade Leading Edge And Pressure Side Model, Ryan A. Lynch Jun 2016

Investigation Of Thermal Scaling Effects For A Turbine Blade Leading Edge And Pressure Side Model, Ryan A. Lynch

Theses and Dissertations

Recent experiments have attempted to quantify the overall cooling effectiveness at elevated temperature conditions. The Film Cooling Rig (FCR) at the Air Force Institute of Technology has been modified to better match the configuration of a similar large scale, low temperature rig at the Air Force Research Laboratory. This has enabled comparison and trend identification of how various properties scale from the low to high temperature condition. Various internal cooling and hole geometry configurations were investigated over a range of temperatures while utilizing the thermal scaling capability of Inconel 718. Film cooling trends and measures of overall effectiveness were matched, …


Investigation Of The High-Cycle Fatigue Life Of Selective Laser Melted And Hot Isostatically Pressed Ti-6al-4v, Kevin D. Rekedal Mar 2015

Investigation Of The High-Cycle Fatigue Life Of Selective Laser Melted And Hot Isostatically Pressed Ti-6al-4v, Kevin D. Rekedal

Theses and Dissertations

Experimental research was conducted on the effectiveness of Hot Isostatic Pressing (HIP) to improve the high-cycle fatigue life of Selective Laser Melted Ti-6Al-4v (SLM Ti-64). A thorough understanding of the fatigue life performance for additively manufactured parts is necessary before such parts are utilized in an operational capacity in Department of Defense (DoD) systems. Such applications include the rapid, on-demand fabrication of replacement parts during contingency operations or the production of light-weight topology-optimized components. This research assesses the fatigue life of SLM Ti-64 test specimens built directly to net dimensions without any subsequent surface machining. The configuration is designed as …


Experimental Magnetohydrodynamic Energy Extraction From A Pulsed Detonation, Kaz I. Teope Mar 2015

Experimental Magnetohydrodynamic Energy Extraction From A Pulsed Detonation, Kaz I. Teope

Theses and Dissertations

The high MWatt power available in a fuel-fed detonation wave, which contains combustion ions in the trailing gas, provides an opportunity for external power extraction via electromagnetically forced charged particle drift. Sets of experiments were accomplished using a pulsed detonation tube, extracting power across a load resistor in an electrical circuit with an applied electric or magnetic field to determine what magnitude of gas conductivity and power extraction could be attained from an unseeded or seeded pulsed detonation driven combustion. Due to the low magnetic field strength, even with flow seeding, the power extracted in this research was not enough …


A Method To Develop Neck Injury Criteria To Aid Design And Test Of Escape Systems Incorporating Helmet Mounted Displays, Jeffrey C. Parr Sep 2014

A Method To Develop Neck Injury Criteria To Aid Design And Test Of Escape Systems Incorporating Helmet Mounted Displays, Jeffrey C. Parr

Theses and Dissertations

HMDs are becoming common human-machine interface equipment in manned military flight, but introducing this equipment into the overall aircraft escape system poses new and significant system design, development, and test concerns. Although HMDs add capabilities, which improve operator performance, the increased capability is often accompanied by increased head supported mass. The increased mass can amplify the risk of pilot neck injury during ejection when compared to lighter legacy helmets. Currently no adequate USAF neck injury criteria exist to effectively guide the requirements, design, and test of escape systems for pilots with HMDs. This research effort presents a novel method to …


A Study Of Slipper And Rail Wear Interaction At Low Speed, Greg V. Cavallaro Jun 2014

A Study Of Slipper And Rail Wear Interaction At Low Speed, Greg V. Cavallaro

Theses and Dissertations

The wear research presented in the work consists of results gathered from adapting a FEM based on a Holloman High Speed Test Track (HHSTT) mission executed in January 2008. The FEM consists of a VascoMax slipper sliding on a stationary AISI-1080 steel rail. The slipper is slid along the rail at speeds of 20 m/s and 40 m/s with complementary vertical velocities of -0.079 m/s and -0.059 m/s, respectively. The surface roughness caused by features such as asperities and valleys of the materials, is simulated in this model by five asperities, 1 micron to 5 microns on the rail and …


Minimization Of The Effects Of Secondary Reactions On Turbine Film Cooling In A Fuel Rich Environment, Andrew T. Shewhart Jun 2014

Minimization Of The Effects Of Secondary Reactions On Turbine Film Cooling In A Fuel Rich Environment, Andrew T. Shewhart

Theses and Dissertations

The demand for increased thrust, higher engine efficiency, and reduced fuel consumption has increased the turbine inlet temperature and pressure in modern gas turbine engines. The outcome of these higher temperatures and pressures is the potential for unconsumed radical species to enter the turbine. Because modern cooling schemes for turbine blades involve injecting cool, oxygen rich air adjacent to the surface, the potential for reaction with radicals in the mainstream flow and augmented heat transfer to the blade arises. This study evaluated various configurations of multiple cylindrical rows of cooling holes in terms of both heat release and effective downstream …


Operational Characteristics Of An Ultra Compact Combustor, Christopher J. Damele Mar 2014

Operational Characteristics Of An Ultra Compact Combustor, Christopher J. Damele

Theses and Dissertations

Ultra Compact Combustors offer unique solutions to minimize engine size and weight. They accomplish this by reducing the number of components in the engine core and perform the combustion in a circumferential cavity that encircles the core flow. Within this cavity, the fuel is injected rich. Burning continues to occur in the vane passage beneath the circumferential cavity which must be completed in a controlled manner prior to the inlet plane of the turbine rotor. Furthermore, the temperature distribution at the exit of the vane passage must be controlled to generate high work extraction from the turbine. The primary metrics …


Design And Testing Of An H2/O2 Predetonator For A Simulated Rotating Detonation Engine Channel, Stephen J. Miller Mar 2013

Design And Testing Of An H2/O2 Predetonator For A Simulated Rotating Detonation Engine Channel, Stephen J. Miller

Theses and Dissertations

A study is presented on the relationship between a pre-detonator and a detonation channel of an RDE. Testing was conducted on a straight narrow channel made of clear polycarbonate windows connected to an H2/O2 pre-detonator to simulate the RDE initiation scheme and allow for flow visualization. A comparison is made on decoupling distance and wave velocities for a range of pre-detonator designs, inclination angles, equivalence ratios and geometries placed within the simulated channel. Regardless of inclination angle or equivalence ratio the detonation wave decoupled within 25 mm from the pre-detonator exit into the channel. A step change in diameter 25 …