Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses and Dissertations

Air Force Institute of Technology

Discipline
Keyword
Publication Year

Articles 31 - 60 of 103

Full-Text Articles in Mechanical Engineering

Film Cooling In Fuel Rich Environments, Jacob J. Robertson Mar 2013

Film Cooling In Fuel Rich Environments, Jacob J. Robertson

Theses and Dissertations

The ultra compact combustor is a high performance gas turbine design concept that portends reduced weight for future weapons platforms. A natural outcome of the design is the continual presence of fuel-rich air in the turbine component of the engine. Because modern cooling schemes for hot section turbine blades involve injecting cool, oxygen-rich air adjacent to the surface, the potential arises for reaction with the unconsumed radicals in the mainstream ow and augmented heat transfer to the blade. This outcome is contrary to the purpose of film cooling, and can lead to early life-cycle turbine failure. This study examined the …


Characterization Of Centrifugally-Loaded Flame Migration For Ultra-Compact Combustors, Kenneth D. Lebay Mar 2012

Characterization Of Centrifugally-Loaded Flame Migration For Ultra-Compact Combustors, Kenneth D. Lebay

Theses and Dissertations

The Air Force Research Laboratory (AFRL) has designed an Ultra Compact Combustor (UCC) showing viable merit for significantly reducing gas turbine combustor length making it a viable candidate for implementation as an inter-turbine burner and realization of efficiency benefits from the resulting near constant temperature cycle. This concept uses an off-axis combustor cavity and projects approximately 66% length reduction over a conventional combustor. The annular nature of the cavity creates high angular acceleration levels, on the order of 500-3500 g's, resulting in strong centrifugal and buoyant forces. This unique combination works to significantly reduce the required burn time and subsequently …


Increasing The Sensitivity Of Surface Acoustic Wave (Saw) Chemical Sensors And Other Chemical Sensing Investigations, Nina R. Smith Mar 2010

Increasing The Sensitivity Of Surface Acoustic Wave (Saw) Chemical Sensors And Other Chemical Sensing Investigations, Nina R. Smith

Theses and Dissertations

The work involves the fabrication and testing of three different surface acoustic wave (SAW) device designs, an investigation of nanowires sensitive to chemicals and preconcentrator prototypes to include with chemical sensors. The SAW chemical sensor designs include modifications to a basic SAW device to see if the sensitivity of the SAW device is increased. The modifications consist of etched trenches along the propagation field, coating the device with carbon nanotubes (CNTs) under the chemically sensitive layer and coating CNTs on top of the chemically sensitive layer. SAW devices are coated with Nafion®, a polymer sensitive to ethanol. The tests indicate …


Investigation Of Thermal Management And Metamaterials, Calvin T. Roman Mar 2010

Investigation Of Thermal Management And Metamaterials, Calvin T. Roman

Theses and Dissertations

Thermal metamaterials are materials composed of engineered, microscopic structures that exhibit unique thermal performance characteristics based primarily on their physical structures and patterning, rather than just their chemical composition or bulk material properties. The heat transfer performance attributes of a thermal metamaterial are such that similar performance cannot be obtained using conventional materials or compounds. Thermal metamaterials are an emerging technology, and are just now beginning to be acknowledged and developed by the microelectronics and material sciences community. This thesis effort analyzed the current state of thermal metamaterial research, examined the physics and theory of heat transfer and electrical conductivity …


Numerical Investigation Of Pre-Detonator Geometries For Pde Applications, Robert T. Fievisohn Mar 2010

Numerical Investigation Of Pre-Detonator Geometries For Pde Applications, Robert T. Fievisohn

Theses and Dissertations

A parametric study was performed to determine optimal geometries to allow the successful transition of a detonation from a pre-detonator into the thrust tube of a pulse detonation engine. The study was performed using a two-dimensional Euler solver with progress variables to model the chemistry. The geometrical configurations for the simulations look at the effect of shock reflections, flow obstructions, and detonation diffraction to determine successful geometries. It was observed that there are success and failure rates associated with pre-detonators. These success rates appear to be determined by the transverse wave structure of a stably propagating detonation wave and must …


Discrete Film Cooling In A Rocket With Curved Walls, Jonathan F. Mccall Dec 2009

Discrete Film Cooling In A Rocket With Curved Walls, Jonathan F. Mccall

Theses and Dissertations

This study quantified the effects of discrete wall-based film cooling in a rocket with curved walls. Simulations and experiments showed decreasing with wall radius of curvature, holding jet diameter constant, improves net heat flux reduction (NHFR) and adiabatic effectiveness (η) for 90˚ compound injected cylindrical jets, though η is reduced at the highest curvature. NHFR and η improved further with a high favorable stream-wise pressure gradient (K=2.1x10-5) at all tested blowing ratios, but were affected little by a high density ratio (DR=1.76) using carbon dioxide as the coolant. Experiments were run at a Reynolds number of 31K and …


Investigation Into Contact Resistance And Damage Of Metal Contacts Used In Rf-Mems Switches, Kevin W. Gilbert Dec 2009

Investigation Into Contact Resistance And Damage Of Metal Contacts Used In Rf-Mems Switches, Kevin W. Gilbert

Theses and Dissertations

This research examines the physical and electrical processes involved in lifecycle failure of Microelectromechanical (MEMS) Radio-Frequency (RF) cantilever beam ohmic contact switches. Failures of these switches generally occur at the contact, but complete details of performance of microcontacts are difficult to measure and have not been previously reported. This study investigated the mechanics of microcontact behavior by designing and constructing a novel experimental setup. Three representative contact materials of varying microstructure (Au, Au5%Ru, Au4%V2O5) were tested and parameters of contact during cycling were measured. The Au4%V2O5, a dispersion strengthened material developed at …


Ceramic Matrix Composite Characterization Under A Combustion And Loading Environment, Andrew R. Nye Mar 2009

Ceramic Matrix Composite Characterization Under A Combustion And Loading Environment, Andrew R. Nye

Theses and Dissertations

Lightweight materials that can withstand high temperatures and corrosive environments are constantly sought after in the aerospace industry, typically for Gas Turbine Engine (GTE) application. These materials need to retain their strength throughout the long service period they would see in the combustor and turbine components of a GTE. One material that is ideal for these types of applications is an oxide/oxide Ceramic Matrix Composite (CMC). The fatigue behavior of the oxide/oxide CMC NextelTM 720/Alumina (N720/A) was investigated in a unique high temperature environment. N720/A consisted of an 8-harness satin weave of NextelTM aluminum oxide/silicon oxide fibers bound …


Laser-Induced Fluorescence And Performance Analysis Of The Ultra-Compact Combustor, Patrick J. Lakusta Jun 2008

Laser-Induced Fluorescence And Performance Analysis Of The Ultra-Compact Combustor, Patrick J. Lakusta

Theses and Dissertations

The AFIT Combustion Optimization and Analysis Laser (COAL) lab’s modular design and state-of-the-art diagnostic systems make it a flexible and important facility for the analysis of combustion processes. The objectives of the current research are to install several enhancements in the lab, validate the laser diagnostic system, characterize the igniter for AFIT’s Ultra-Compact Combustor (UCC) sections, and perform a non-intrusive laser diagnostic, performance, and high-speed video analysis of a flat-cavity UCC section. Validation of the laser system was accomplished using OH Planar Laser-Induced Fluorescence (PLIF) in a laminar hydrogen-air flame produced by a Hencken burner. Results are compared to previous …


Heat Transfer Due To Unsteady Effects As Investigated In A High-Speed, Full-Scale, Fully-Cooled Turbine Vane And Rotor Stage, Jonathan R. Mason Jun 2008

Heat Transfer Due To Unsteady Effects As Investigated In A High-Speed, Full-Scale, Fully-Cooled Turbine Vane And Rotor Stage, Jonathan R. Mason

Theses and Dissertations

Experiments were conducted to examine the effects of film cooling on a gas turbine engine’s high‐pressure turbine section. The focus for this effort was in the tip/shroud region of a rotor stage and a high pressure turbine vane. A primary goal was to understand the unsteady flow effects. Attempts were also made to characterize the effects as caused by the fully‐cooled rotor stage. Data for this investigation was taken at the U.S. Air Force’s Turbine Research Facility (TRF), a transient blowdown facility with instrumentation fitted to a full‐scale, high‐speed, fully‐cooled vane and rotor stage of proprietary design. Measurements of pressure, …


The Impact Of Heat Release In Turbine Film Cooling, Dave S. Evans Jun 2008

The Impact Of Heat Release In Turbine Film Cooling, Dave S. Evans

Theses and Dissertations

The Ultra Compact Combustor is a design that integrates a turbine vane into the combustor flow path. Because of the high fuel-to-air ratio and short combustor flow path, a significant potential exists for unburned fuel to enter the turbine. Using contemporary turbine cooling vane designs, the injection of oxygen-rich turbine cooling air into a combustor flow containing unburned fuel could result in heat release in the turbine and a large decrease in cooling effectiveness. The current study explores the interaction of cooling flow from typical cooling holes with the exhaust of a fuel-rich well-stirred-reactor operating at high temperatures over a …


Laser Diagnostic System Validation And Ultra-Compact Combustor Characterization, Terry B. Hankins Mar 2008

Laser Diagnostic System Validation And Ultra-Compact Combustor Characterization, Terry B. Hankins

Theses and Dissertations

The AFIT combustion optimization and analysis laser (COAL) lab is now completely operational and is state-of-the-art in combustion diagnostics. The objective of this research is to perform a validation of a laser diagnostic system and to begin the characterization of a small-scale model of an ultra-compact combustor (UCC). Validation of the laser system was accomplished by using planar laser induced fluorescence (PLIF) on a laminar premixed hydrogen-air flame produced by a Hencken burner. OH species concentrations are measured. Flame temperatures are determined with a two line fluorescence technique using different transitions in the (1,0) band of the OH (A-X) electronic …


Conceptual Mems Devices For A Redeployable Antenna, Virginia Miller Sep 2007

Conceptual Mems Devices For A Redeployable Antenna, Virginia Miller

Theses and Dissertations

Micro-Electro-Mechanical Systems (MEMS) are becoming an integral part of our lives through a wide range of applications, including MEMS accelerators for air bag deployment in vehicles, micromirrors in projection devices, and various sensors for chemical/biological applications. MEMS are a key aspect of ever-increasing significance in a myriad of commercial and military applications. Because of this importance, this thesis utilizes MEMS devices that can deploy and retract an antenna suitably sized for placement on an insect or microrobot for communication purposes. A target monopole antenna with a length of 1 mm was used as a test metric. From this requirement, several …


Validation Of The Afit Small Scale Combustion Facility And Oh Laser-Induced Fluorescence Of An Atmospheric Laminar Premiext Ed Flame, Stephen J. Koether Sep 2007

Validation Of The Afit Small Scale Combustion Facility And Oh Laser-Induced Fluorescence Of An Atmospheric Laminar Premiext Ed Flame, Stephen J. Koether

Theses and Dissertations

Construction in the AFIT combustion facility is complete and the objective of this report is to explain the steps taken to make the laboratory operational. The infinite radius Ultra-Compact Combustor (UCC) sectional model has been delivered and is fully installed with all fuel, air and instrument lines. Every major system in the lab has been tested and is functioning properly. Laboratory operating procedure has been established to ensure both safety and continuity in experimental results. Finally, the lab has been certified through official safety channels and combustion experiments are underway. The unique capability of the AFIT combustion laboratory is the …


Design, Construction, And Validation Of The Afit Small Scale Combustion Facility And Section Model Of The Ultra-Compact Combustor, Wesley S. Anderson Mar 2007

Design, Construction, And Validation Of The Afit Small Scale Combustion Facility And Section Model Of The Ultra-Compact Combustor, Wesley S. Anderson

Theses and Dissertations

The AFIT small-scale combustion facility is complete and its first experiment designed and built. Beginning with the partially built facility, detailed designs have been developed to complete the laboratory in order to run small-scale combustion experiments at atmospheric pressure. A sectional model of the Ultra-Compact Combustor has also been designed and built. Although the lab's specific design intent was to study the UCC's cavity-vane interaction, facility flexibility has also been maintained for future work. The design enabled the completion of liquid fuel and air delivery systems, power and control systems, and test equipment. The design includes failsafe operation, remote control, …


Characterization Of Intercalated Graphite Fibers For Microelectromechanical Systems (Mems) Applications, Bryan W. Winningham Mar 2007

Characterization Of Intercalated Graphite Fibers For Microelectromechanical Systems (Mems) Applications, Bryan W. Winningham

Theses and Dissertations

Research was accomplished to characterize the electrical and physical characteristic changes of the Thornel® P-100 carbon fiber and five variants when intercalated with 96% sulfuric acid and incorporated the use of Microelectromechanical Systems (MEMS) structures for testing purposes. The five fiber variants were oxidized in 1 M nitric acid at 0.5 A for 30 seconds, 1 and 2 minutes, the last two samples were detreated at 1150 °C for one hour prior to the nitric acid treatment. The fibers were mounted onto a MEMS die, placed into a chip carrier, sulfuric acid added, the chip carrier sealed and testing accomplished. …


Characterizationn Of Polumer-Based Mems Pyroelectic Infrared Detector, Mark E. Allard Mar 2007

Characterizationn Of Polumer-Based Mems Pyroelectic Infrared Detector, Mark E. Allard

Theses and Dissertations

AFRL/MLPJE had developed a novel thermal sensing material termed protein-impregnated-polymer (PIP). Thus far, a proof-of-concept has been demonstrated using a macro-sized pixel (0.64 mm2) as a bolometric detector. In an effort to better characterize this novel thermal sensing material, experimental data was used to determine figures of merit (FOMs) comparative to off-the-shelf thermal detectors. Microelectromechanical (MEMS) pixels were designed and used as the support structure for an inkjet-deposited droplet of the PIP. During the material characterization, two observations were made: PIP is a pyroelectric material, and the polymer (polyvinyl alcohol (PVA)) without the protein was found to be …


Toward A Flying Mems Robot, Nathan E. Glauvitz Mar 2007

Toward A Flying Mems Robot, Nathan E. Glauvitz

Theses and Dissertations

The work in this thesis includes the design, modeling, and testing of motors and rotor blades to be used on a millimeter-scale helicopter style flying micro air vehicle (MAV). Three different types of motor designs were developed and tested, which included circular scratch drives, electrostatic motors, and comb drive resonators. Six different rotor designs were tested; five used residual stress while one design used photoresist to act as a hinge to achieve rotor blade deflection. Two key parameters of performance were used to evaluate the motor and rotor blade designs: the frequency of motor rotation and the angle of deflection …


Dynamic Response Of A Collidant Impacting A Low Pressure Airbag, Peter A. Dreher Mar 2007

Dynamic Response Of A Collidant Impacting A Low Pressure Airbag, Peter A. Dreher

Theses and Dissertations

There are many uses of low pressure airbags, both military and commercial. Many of these applications have been hampered by inadequate and inaccurate modeling tools. This dissertation contains the derivation of a four degree-of-freedom system of differential equations from physical laws of mass and energy conservation, force equilibrium, and the Ideal Gas Law. Kinematic equations were derived to model a cylindrical airbag as a single control volume impacted by a parallelepiped collidant. An efficient numerical procedure was devised to solve the simplified system of equations in a manner amenable to discovering design trends. The largest public airbag experiment, both in …


Branch Detonation Of A Pulse Detonation Engine With Flash Vaporized Jp-8, John David Slack Dec 2006

Branch Detonation Of A Pulse Detonation Engine With Flash Vaporized Jp-8, John David Slack

Theses and Dissertations

Pulse Detonation Engines (PDE) operating on liquid hydrocarbon fuels are limited to operating frequencies of 35 Hz due to long ignition times from a low energy ignition sources. This study shows ignition time of JP-8 can be nearly eliminated by igniting a thrust tube using a secondary detonation. A counter flow heat exchanger attached to a thrust tube utilized waste heat from the detonation process to heat JP-8 to supercritical conditions. The fuel flash vaporized when injected into the air stream of the engine. A detonation was produced by a spark in a 5 cm diameter, 1.37 m long tube. …


Design And Numerical Simulation Of Two Dimensional Ultra Compact Combustor Model Sections For Experimental Observation Of Cavity-Vane Flow Interactions, David S. Moenter Sep 2006

Design And Numerical Simulation Of Two Dimensional Ultra Compact Combustor Model Sections For Experimental Observation Of Cavity-Vane Flow Interactions, David S. Moenter

Theses and Dissertations

An improved computational fluid dynamics (CFD) model was developed for numerical simulation of the Ultra Compact Combustor (UCC) concept to enhance turbulent flow characterization of the circumferentially traveling, centrifugal-force enhanced combustion, cavity flow into the engine main flow passage via a radial cavity in the turbine axial guide vanes. The CFD model uses a dense grid on a 60° periodic, axisymmetric combustor section, with the RNG κ-ε turbulence model to resolve turbulent flow details. An overall analysis and performance evaluation of the experimentally tested UCC configuration and an axially shortened cavity baseline configuration was conducted at various experimentally documented operating …


Numerical Investigation Of Cavity-Vane Interactions Within The Ultra Compact Combustor, Jonathan F. Anisko Mar 2006

Numerical Investigation Of Cavity-Vane Interactions Within The Ultra Compact Combustor, Jonathan F. Anisko

Theses and Dissertations

A numerical analysis and design optimization of the Ultra Compact Combustor (UCC) has been conducted. The UCC is a combustor designed to incorporate high-g loadings to increase flame propagation speed while reducing flame length, thereby helping to significantly reduce the size of a combustor. A commercial CFD package with a k-Ⲉ turbulence model has been used to develop design rules for the construction of future UCCs. There have been several versions of UCC that have been designed, built and tested by AFRL/PRTC. Since real experimental tests are expensive and construction time is prohibitive to test many different design configurations, CFD …


Characterization Of Stress In Gan-On-Sapphire Microelectromechanical Systems (Mems) Structures Using Micro-Raman Spectroscopy, Francisco E. Parada Mar 2006

Characterization Of Stress In Gan-On-Sapphire Microelectromechanical Systems (Mems) Structures Using Micro-Raman Spectroscopy, Francisco E. Parada

Theses and Dissertations

Micro-Raman (µRaman) spectroscopy is an efficient, non-destructive technique widely used to determine the quality of semiconductor materials and microelectromechanical systems. This work characterizes the stress distribution in wurtzite gallium nitride grown on c-plane sapphire substrates by molecular beam epitaxy. This wide bandgap semiconductor material is being considered by the Air Force Research Laboratory for the fabrication of shock-hardened MEMS accelerometers. µRaman spectroscopy is particularly useful for stress characterization because of its ability to measure the spectral shifts in Raman peaks in a material, and correlate those shifts to stress and strain. The spectral peak shift as a function of stress, …


Inertia Measurement And Dynamic Stability Analysis Of A Radio-Controlled Joined-Wing Aircraft, William A. Mcclelland Mar 2006

Inertia Measurement And Dynamic Stability Analysis Of A Radio-Controlled Joined-Wing Aircraft, William A. Mcclelland

Theses and Dissertations

Dynamic stability and stall during steady level turns were examined for VA-1, a joined-wing flight demonstrator aircraft. Configurations with a lower vertical tail and fairings over the main landing gear were compared with a recommendation on the combination had the best drag and dynamic stability characteristics. The dynamic stability analysis was broken into four key parts: a twist test experimentally measured mass moments of inertia, a panel method was used to find non-dimensional stability derivatives, lateral and longitudinal state space models estimated dynamic stability characteristics and handling quality levels were evaluated using a Cooper-Harper based rating system. VA-1 was found …


Power-Scavenging Mems Robots, Daniel J. Denninghoff Mar 2006

Power-Scavenging Mems Robots, Daniel J. Denninghoff

Theses and Dissertations

This thesis includes the design, modeling, and testing of novel, power-scavenging, biologically inspired MEMS microrobots. Over one hundred 500-μm and 990-μm microrobots with two, four, and eight wings were designed, fabricated, characterized. These microrobots constitute the smallest documented attempt at powered flight. Each microrobot wing is comprised of downward-deflecting, laser-powered thermal actuators made of gold and polysilicon; the microrobots were fabricated in PolyMUMPs® (Polysilicon Multi-User MEMS Processes). Characterization results of the microrobots illustrate how wing-tip deflection can be maximized by optimizing the gold-topolysilicon ratio as well as the dimensions of the actuator-wings. From these results, an optimum actuator-wing configuration was …


Microelectromechanical Systems (Mems) Interrupter For Safe And Arm Devices, Steven S. Mink Mar 2006

Microelectromechanical Systems (Mems) Interrupter For Safe And Arm Devices, Steven S. Mink

Theses and Dissertations

This thesis addresses the development of a new micro-scale interrupter mechanism for a safe and arm device used in modern weapon systems. The interrupter mechanism often consists of a physical barrier that prevents an initial source of energy, in an explosive train, from being transferred to subsequent charges. In general, when the physical barrier is removed, the weapon is considered armed, and the charge is allowed to propagate. Several issues facing current safe and arm devices systems are the shrinking industrial base for manufacturing these devices and the desire for modern safe and arm devices to be compatible with next …


Design, Build And Validation Of A Small-Scale Combustion Chamber Testing Facility, Eric R. Dittman Mar 2006

Design, Build And Validation Of A Small-Scale Combustion Chamber Testing Facility, Eric R. Dittman

Theses and Dissertations

This study investigated the design parameters necessary for the construction and use of a testing facility built to test the combustor section of engines. User inputs were acquired by interview and used in the decisions made in arrangement of pieces of machinery and how different systems were to interact. The design was then carried out as the various parts of the facility were built and installed. Software was designed which controlled the different parts of the combustion process and monitored the different products of combustion as well as the properties of the air and fuel used in the combustion. These …


Optimization Of A Low Heat Load Turbine Nozzle Guide Vane, Jamie J. Johnson Mar 2006

Optimization Of A Low Heat Load Turbine Nozzle Guide Vane, Jamie J. Johnson

Theses and Dissertations

Often turbomachinery airfoils are designed with aerodynamic performance foremost in mind rather than component durability. However, future aircraft systems require ever increasing levels of gas-turbine inlet temperature causing the durability and reliability of turbine components to be an ever more important design concern. As a result, the need to provide improved heat transfer prediction and optimization methods presents itself. Here, an effort to design an airfoil with minimized heat load is reported. First, a Reynolds-Averaged Navier-Stokes (RANS) flow solver was validated over different flow regimes as well as varying boundary conditions against extensive data available in literature published by the …


Alleviation Of Buffet-Induced Vibration Using Piezoelectric Actuators, Shawn D. Morganstern Mar 2006

Alleviation Of Buffet-Induced Vibration Using Piezoelectric Actuators, Shawn D. Morganstern

Theses and Dissertations

Buffet-induced vibration has been problematic for aircraft structures for many years. The F-16 ventral fin, while prone to these effects, lends itself well to the evaluation of modern active structural and flow control technologies. The objective of this research was to determine the most critical natural modes of vibration for the F-16 ventral fin and design piezoelectric actuators capable of reducing buffet-induced ventral fin vibration. A finite element model (FEM) for the fin was developed, tuned and optimized to closely match published modal frequencies. Piezoelectric actuator patches were designed using the strain characteristics of the FEM and integrated into the …


Performance Measurements Of Direct Air Injection In A Cavity-Based Flameholder For A Supersonic Combustor, Scott G. Edens Dec 2005

Performance Measurements Of Direct Air Injection In A Cavity-Based Flameholder For A Supersonic Combustor, Scott G. Edens

Theses and Dissertations

For several years the Air Force Research Lab Propulsion Directorate has been studying the difficulties in fueling supersonic combustion ramjet engines with hydrocarbon based fuels. Recent investigations have focused on the use of direct air injection into a directly-fueled cavity-based flameholder. Direct air injection has been shown qualitatively to be a valuable tool for improving cavity combustion. Little quantitative data is available that characterizes the performance of cavity-based flameholders. The objective of this research was to quantitatively determine the specific advantages and disadvantages of the direct air injection scheme. This was accomplished via intrusive probing into a supersonic free stream …