Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 31 - 60 of 81

Full-Text Articles in Polymer and Organic Materials

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers Dec 2016

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers

Doctoral Dissertations

Organic photovoltaic devices have been extensively studied as a means to produce sustainable energy. However, the performance of organic-photovoltaic (OPV) devices is dependent upon a number of factors including the morphology of the active layer, device architecture, and processing conditions. Recent research has indicated that fullerenes in the bulk heterojunction are entropically driven to the silicon and air interfaces upon crystallization of P3HT, which occurs during thermal annealing. The first chapter of this research focuses on investigating the structure and function of end-tethered poly(3-hexylthiophene) chains to a transparent electrode as an anode buffer layer. Neutron reactivity reveals that these P3HT …


Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer Dec 2016

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer

Masters Theses

Over-exploitation of fossil fuels coupled with increasing pressure to reduce carbon emissions are prompting a transition from conventional petrochemical feedstocks to sustainable and renewable sourced carbon. The use of lignocellulosic biomass as a feedstock for integrated biorefining is of current high interest, as separation into its component parts affords process streams of cellulose, hemicellulose and lignin, each of which can serve as a starting point for the production of biobased chemicals and fuels. Given the large number of potential sources of lignocellulosic feedstocks, the biorefinery will need to adapt to the supplies available over a normal growing season. Of particular …


Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek Dec 2016

Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek

Masters Theses

The aim of this work is to develop lignin carbon fiber for composite applications. This included mechanical testing of single lignin carbon fiber (LCF), interfacial shear strength determination for LCF-resin systems using single fiber fragmentation, x-ray diffraction for the evaluation of microstructural parameters, and finally composite manufacturing and testing. Through these focused areas of analysis, the carbon fiber is thoroughly characterized and composite performance is evaluated. This effort was a collaboration with the Center for Renewable Carbon (CRC) and the Civil and Environmental Engineering Department. LCF produced by the CRC resulted in fibers having tensile strength of 250-800 MPa and …


Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li Aug 2016

Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li

Doctoral Dissertations

Organic semiconducting materials, consisting mostly of carbon and hydrogen atoms, provide remarkable promise for electronic applications due to their easy processing, chemical tenability, low costs and environmental-friendly characteristics. For realizing electronic applications such as light emitting diodes and photovoltaic cells, charge-transfer states act as an important intermediate state for recombination and dissociation. Interestingly, magnetic field effects on semiconducting materials have been realized based on the suppression of spin mixing in the charge-transfer states. Although lots of studies have been carried out on investigating the properties of charge-transfer states, little has been done to consider the interaction between them. This thesis …


Exploring Thermoelectric Effect Based On Multi-Layer Conductor/Organic/Conductor Devices, Qing Liu Aug 2016

Exploring Thermoelectric Effect Based On Multi-Layer Conductor/Organic/Conductor Devices, Qing Liu

Doctoral Dissertations

Thermoelectric phenomena involve the simultaneous presence of both electrical and thermal currents. The entropy has been heavily used as the driving force to diffuse charge carriers between high and low temperature surfaces towards the development of Seebeck effects in thermoelectric devices. However, this driving force from entropy difference can cause an inverse relationship between Seebeck coefficient and electrical conductivity in the thermoelectric developments. Increasing the charge density can decrease the entropy difference to diffuse the charge carriers at a given temperature difference and lead to a decrease on the Seebeck coefficient developed by the entropy difference. Therefore, it is necessary …


Magnetic, Optical And Electrical Properties Of Electron-Hole Pairs In Polymer And Organo-Metal Halide Perovskite Photovoltaic Cells, Yu-Che Hsiao May 2016

Magnetic, Optical And Electrical Properties Of Electron-Hole Pairs In Polymer And Organo-Metal Halide Perovskite Photovoltaic Cells, Yu-Che Hsiao

Doctoral Dissertations

Organic polymer and organo-metal halide perovskite (OMHP) materials have attracted extensive attention during the past decade due to their various applications, like solar cells, light emitting diode, even lasing action (OMHP). Especially, the organo-metal halide perovskite solar cell shows a remarkable power conversion efficiency of about 20%, which is comparable to the amorphous silicon solar cell. Therefore, OMHP solar cell had been considered as a promising substitution for the next generation of renewable energy source. The OMHP materials contain both advantages of organic and inorganic semiconductors, like solution processable thin film fabrication, long-range ambipolar transport characteristics, high dielectric constants, low …


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi May 2016

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between …


Study Of Magneto-Optical Behaviors At A Ferromagnetic/Organic Semiconductor Interface, Jeremy Tyler Tisdale May 2016

Study Of Magneto-Optical Behaviors At A Ferromagnetic/Organic Semiconductor Interface, Jeremy Tyler Tisdale

Masters Theses

Organic materials have been widely studied for the last 20 years to use for photovoltaic applications. Organic photovoltaic materials have shown promising properties for solar cells, such as very low cost, flexibility, easy fabrication methods, etc. Although power conversion efficiencies for organic-based solar cells have exponentially grown in the last decade, up to about 13% in early 2016, it is still optimal to increase these efficiencies. In order to raise efficiencies, it is important to study the fundamental mechanisms inside organic materials that lead to photovoltaic properties. This thesis reports the magneto-optical effects on the p-type organic semiconductor, tetracene, from …


Graphene And Carbon Nanotube Pla Composite Feedstock Development For Fused Deposition Modeling, Austin Plymill, Robert Minneci, Duncan Alexander Greeley, Jack Gritton May 2016

Graphene And Carbon Nanotube Pla Composite Feedstock Development For Fused Deposition Modeling, Austin Plymill, Robert Minneci, Duncan Alexander Greeley, Jack Gritton

Chancellor’s Honors Program Projects

No abstract provided.


Synthesis And Characterizations Of Stimuli-Responsive Polymeric Materials For Biomedical Applications, Shuangcheng Tang Dec 2015

Synthesis And Characterizations Of Stimuli-Responsive Polymeric Materials For Biomedical Applications, Shuangcheng Tang

Doctoral Dissertations

Stimuli-responsive polymeric materials have been now widely researched toward the biomedical applications including therapeutic delivery, bio-sensor surface modification, and tissue-engineering, etc., considering their desirable biocompatibility, tunable properties, and sensitivity toward physiological stimuli. Beyond the monoresponsive materials, polymers with responsiveness simultaneously toward multiple stimuli are paid great attention to because the control of responsive behaviors could be achieved at a more accurately and delicately level in a complex local environment. However, many challenges still exist such as maintaining integrity of the structure, shaping the morphology at micro- and macro-scale, and regulating a controllable and predictable transition behavior.

The objectives of this …


Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das Dec 2015

Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das

Doctoral Dissertations

The first part of this dissertation focuses on interface and morphology engineering in polymer- and small molecule-based organic solar cells. High-performance devices were fabricated, and the device performance was correlated with nanoscale structures using various electrical, spectroscopic and microscopic characterization techniques, providing guidelines for high-efficiency cell design.

The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic technology with skyrocketing rise in power conversion efficiency (PCE) and currently showing comparable PCEs with those of existing thin film photovoltaic technologies such as CIGS and CdTe. Fabrication of large-area PSCs without compromising reproducibility and device PCE requires formation of dense, …


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are …


Novel Thermoplastic Elastomers Based On Benzofulvene: Synthesis And Mechanical Properties, Weiyu Wang Dec 2015

Novel Thermoplastic Elastomers Based On Benzofulvene: Synthesis And Mechanical Properties, Weiyu Wang

Doctoral Dissertations

Thermoplastic elastomers (TPEs) are of great importance both academically and technologically. Currently TPEs are the predominated form of styrene-diene copolymers. However, these styrenic TPEs have serious limitations in applications, especially at higher temperature, because of their low upper service temperature (UST). The work described in this dissertation aimed to developing thermoplastic elastomers with a higher UST and lower cost.

In order to develop TPEs with a higher UST, we employed benzofulvene, an anionically polymerizable monomer in hydrocarbon solvent at room temperature, as the glassy block and copolymerized it with isoprene to prepare polybenzofulvene-polyisoprene-polybenzofulvene (FIF) triblock copolymers. Among all triblock copolymers …


Bulk Heterojunctions In Photovoltaic Devices, Ondrej Edward Dyck May 2015

Bulk Heterojunctions In Photovoltaic Devices, Ondrej Edward Dyck

Doctoral Dissertations

Current solar cells, on the market today, have little room for improved efficiency or cost reduction. Part of this is due to the costly manufacture of high purity silicon and the current fabrication methods for solar cells. Solution processable solar cells would mark a great stride forward to cost reduction. If such cells can be demonstrated to be efficient enough and stable enough it would be a turning point in history. However, solution processable devices still need much work before they can compete in the market. This text addresses characterization problems in the TEM, covers a study dealing with optimization …


Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang May 2015

Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang

Doctoral Dissertations

This dissertation considers the development of porous carbon materials as the substrates for Al deposition/dissolution in an Al based ionic liquid flow battery (ILFB) and demonstration of an Al based hybrid supercapacitor. The Aluminum chloride/ 1-ethyl-3-methylimidazolium chloride chloroaluminate ionic liquid is utilized as the electrolyte for these Al based energy storage devices. The ILFB has less capital cost than the all-vanadium redox flow battery because of the inexpensive AlCl3. The feasibility to equip a tank of solid aluminum chloride in an ILFB system aiming to improve energy density is investigated. A critical range of temperature data (50-130 celsius …


Mitigation Of Aging In Low Voltage Power Cables In Nuclear Power Plants, Robert Jonathan York, Joseph Benjamin Ulrich, Grant Murphy, Daniel George Prather May 2015

Mitigation Of Aging In Low Voltage Power Cables In Nuclear Power Plants, Robert Jonathan York, Joseph Benjamin Ulrich, Grant Murphy, Daniel George Prather

Chancellor’s Honors Program Projects

No abstract provided.


Reverse Engineering Of Reciprocating Saw, Nicholas Alexander Cavopol, Candice Kinsler, Carly Jania, Joseph Richard Creekmore Dec 2014

Reverse Engineering Of Reciprocating Saw, Nicholas Alexander Cavopol, Candice Kinsler, Carly Jania, Joseph Richard Creekmore

Chancellor’s Honors Program Projects

No abstract provided.


Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin Aug 2014

Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin

Doctoral Dissertations

Room temperature ionic liquids are an important class of materials due to their chemical tunability and numerous advantageous physicochemical properties. As a result, ionic liquids are currently being investigated for use in a wide array of chemical and electrochemical applications. Despite their great potential, however, the relationship between the chemical structure and physicochemical properties of ionic liquids is not well understood.

To this end, this dissertation presents experimental studies of the reorientational structural dynamics and charge transport properties of a variety of room temperature ionic liquids using quasielastic light scattering spectroscopy and broadband dielectric spectroscopy.

Studies of a series of …


Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters Aug 2014

Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters

Masters Theses

Free radicals are atoms or molecules with an odd number of electrons in an outer shell. Since electrons typically occur in pairs, this leaves one electron that is unpaired. In seek of another electron to pair with, free radicals react with and steal electrons from neighboring molecules, which then become free radicals themselves. This can start a chain reaction, cascading into large scale damage.

Ionizing radiation can tear through molecules, just as bullets can tear through things that we see. If free radicals can be detected, and seen to increase in a material upon radiation exposure, this can indicate molecular …


Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark May 2014

Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark

Doctoral Dissertations

A molecular-level understanding of the factors that contribute to transport properties of proton exchange membranes (PEMs) for fuel cell applications is needed to aid in the development of superior membrane materials. Ab initio electronic structure calculations were undertaken on various PEM ionomer fragments to explore the effects of local hydration, side chain connectivity, protogenic group separation, and specific side chain chemistry on proton dissociation and transfer at low hydration. Cooperative interactions between both intra- and inter-molecular acidic groups and hydrogen bond connectivity were found to enhance proton dissociation at very low degrees of hydration. The energetics associated with proton transfer …


Nanolayer Polymeric Coatings To Enhance The Performance And Service Life Of Inorganic Membranes For High Temperature-High Pressure Biomass Pretreatment And Other Applications, Vincent C. Kandagor May 2014

Nanolayer Polymeric Coatings To Enhance The Performance And Service Life Of Inorganic Membranes For High Temperature-High Pressure Biomass Pretreatment And Other Applications, Vincent C. Kandagor

Doctoral Dissertations

Membrane technology has become increasingly attractive in several applications including water filtration, food industry, oil and gas, and biomedical applications. Most recently the quest for renewable, bioenergy has called for use of membranes in biomass pretreatment and other stages of producing biofuel. The success and advancement of the membrane technology for these various applications has, however, been impeded by the fouling of membranes, which causes the pores in the microporous structure to block, resulting in reduced efficiency, and in some cases, total failure of the membranes system. This challenge leads to a tremendous increase in the cost of using membranes …


Biodegradation And Photodegradation Of Polylactic Acid And Polylactic Acid/ Polyhydroxyalkanoate Blends Nonwoven Agricultural Mulches In Ambient Soil Conditions, Sathiskumar Dharmalingam May 2014

Biodegradation And Photodegradation Of Polylactic Acid And Polylactic Acid/ Polyhydroxyalkanoate Blends Nonwoven Agricultural Mulches In Ambient Soil Conditions, Sathiskumar Dharmalingam

Doctoral Dissertations

Agricultural mulch films, typically made of petroleum-based polyethylene, improve crop productivity by controlling weeds and providing microclimate. Extreme fragmentation of films imposes labor and disposal costs, not to mention environmental problems during and after service life. Although mulches made of biodegradable polymers such as cellulose, (nonbiobased) poly (butylene adipate-co-terephthalate) and polybutylene succinate are employed in the field, the fate of biodegradation of additives in mulches is still questionable in addition to service life until the harvesting. Nonwovens, made of biobased polymers such as poly (lactic acid) (PLA) and PLA-polyhydroxy alkanoate (PHA) blends, have been developed using nonwovens textile technology to …


Modeling Oxygen Permeability In Biodegradable Polymer Films, Duncan Alexander Greeley Apr 2014

Modeling Oxygen Permeability In Biodegradable Polymer Films, Duncan Alexander Greeley

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

No abstract provided.


The Advancement Of Bacterial Cellulose As A Bone And Vascular Scaffolds, Ryan Lee Hammonds Dec 2013

The Advancement Of Bacterial Cellulose As A Bone And Vascular Scaffolds, Ryan Lee Hammonds

Doctoral Dissertations

Bacterial cellulose (BC) is a natural hydrogel made of nanofibers. This material has been used in commercial products, including wound dressings. BC can be modified and optimized for improved performance in multiple applications. This work will focus on producing and characterizing resorbable cellulose, a composite for bone applications, and a composite for a synthetic venous valve leaflet.

BC can be produced and modified to perform as a degradable tissue scaffold. This is achieved by an oxidation procedure after the initial production and purification of native BC. A material characterization of oxidized BC was performed to identify the changes in properties …


Processing, Structure, And Properties Of Nanoparticle Reinforced Nonwoven Sandwich Composites, Josh Griffith Fogle Dec 2013

Processing, Structure, And Properties Of Nanoparticle Reinforced Nonwoven Sandwich Composites, Josh Griffith Fogle

Doctoral Dissertations

Shockwaves produced from ballistic impacts and improvised explosive devices are capable of causing severe internal trauma to soldiers. Current antiballistic materials give adequate protection to soldiers from high velocity impacts, however they are insufficient at absorbing and dissipating shockwave energy generated by these impacts and explosive blasts. The goal of this research was to develop shockwave absorbing protective materials which can be used as liners in conjunction with current antiballistic materials by reinforcing thermoplastic polyurethane nonwovens with high modulus nanoparticles

To determine the appropriate TPU for the application, a series of TPUs of shore hardness ranging from 60D to 85A …


Structure And Morphology Of Sulfonated Polysulfone And Perfluorosulfonic Acid Ionomers, Chen Wang Aug 2013

Structure And Morphology Of Sulfonated Polysulfone And Perfluorosulfonic Acid Ionomers, Chen Wang

Doctoral Dissertations

The limitations of conventional perfluorosulfonic acid (PFSA) based membrane materials have provoked the search for alternative materials which can function as the electrolyte in PEM fuel cells operated at higher temperatures (> 100 °C) and without humidification. A novel class of sulfonated poly(phenylene) sulfone (sPSO2) ionomers have shown much higher proton conductivity than typical PFSA membranes at elevated temperatures. In this dissertation, both computational and experimental methods were used to investigate proton transfer, morphological and structural properties of sPSO2 and PFSA ionomers. We have undertaken ab initio electronic structure calculations to understand the primary hydration and the transfer of protons …


The Effect Of Processing Parameters On Barrier Properties Of Polymers, Russell Louis Hallman Jr. Aug 2013

The Effect Of Processing Parameters On Barrier Properties Of Polymers, Russell Louis Hallman Jr.

Doctoral Dissertations

The intent of this work was to learn if polyethylene could be made with predictable water transfer rates by control of the microstructure. A series of films were formed from three different polyethylenes with a range crystallinities using melt pressing, a controlled cooling rate, and subsequent heat treatments. The samples were tested on a novel device called the polymer characterization device that measures the water transfer flux as a function of temperature. The samples’ morphology was examined using differential gradient column, differential scanning calorimetry, Fourier transform infrared microscopy, wide-angle X-ray diffractions, small-angle X-ray scattering, and small angle light scattering, and …


Tuning Cell Fate On Self-Assembled Structures, Xiaohui Wu Aug 2013

Tuning Cell Fate On Self-Assembled Structures, Xiaohui Wu

Doctoral Dissertations

This dissertation presents novel biodegradable copolymers with dendritic architecture, classic polymers, and inorganic materials with controlled surface topography, stiffness, and surface energy for investigating cell-material interactions and targeting tissue engineering applications. Chapter I reviews the recent progress in bone and nerve regeneration, the key factors of materials influencing cell-material interaction, and self-assembled polymer structures. Chapter II presents a divergent method to synthesize biodegrable com-dendritic tri-block copolymers consisting of poly(ethylene glycol) and poly(L-lactide) or poly(ε-caprolactone) and the MC3T3-E1 cell response to their spherulites. Chapter III presents the fabrication of deformable poly(ε-caprolactone) honeycomb films prepared via a surfactant-free breath figure method in …


Strength And Deformation Of “Tunable” Clay-Polymer Composites, Matthew David Bishop Aug 2013

Strength And Deformation Of “Tunable” Clay-Polymer Composites, Matthew David Bishop

Masters Theses

There are many different types of clay that exist throughout the world, and many are characterized by undesirable engineering properties. Soil improvement techniques are often implemented on these soils such as solidification, reinforcement, etc. However, these solutions are a “static” approach, as the soil’s properties cannot be modified over time. The development of the specific clay-polymer composites used in this study was motivated by the idea of creating a geomaterial that could be modified over time by adjusting its fabric, namely in the form of controlling interparticle and interlayer spacings. Therefore, the composites that are used in this study are …


Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput May 2013

Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput

Doctoral Dissertations

Femtosecond laser machining is a direct-write lithography technique by which user-defined patterns are efficiently and rapidly generated at the surface or within the bulk of transparent materials. When femtosecond laser machining is performed with tightly focused amplified pulses in single-pulse mode, transparent substrates like fused silica can be surface patterned with high aspect ratio (>10:1) and deep (>10 μm) nanoholes. The main objective behind this dissertation is to develop single-pulse amplified femtosecond laser machining into a novel technique for the production of fused silica templates with user-defined patterns made of high aspect ratio nanoholes. The size of the …