Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 541 - 570 of 655

Full-Text Articles in Biomaterials

The Characterization Of Biofilm Attachment To Metal Interfaces: Effects Of Substratum Properties, Marcel D. Mendes Jun 2012

The Characterization Of Biofilm Attachment To Metal Interfaces: Effects Of Substratum Properties, Marcel D. Mendes

Master's Theses

Bacteria are among the most abundant microorganisms on earth, and can be found in essentially every environment. When a clean surface is exposed to media containing planktonic bacteria, the bacterial cells will attach to the surface and aggregate to form what is known as a biofilm. Biofilms have been shown to negatively affect many industries including medical, industrial, and food science applications. While biofilms have been well characterized from a microbiology perspective, there has been much less research from a materials science standpoint. It is hypothesized that the material properties of the substratum (such as the micro-structure) have a significant …


Design Of Experimentation To Systematically Determine The Interaction Between Electrospinning Variables And To Optimize The Fiber Diameter Of Electrospun Poly (D, L-Lactide-Co-Glycolide) Scaffolds For Tissue Engineered Constructs, Yvette S. Castillo Jun 2012

Design Of Experimentation To Systematically Determine The Interaction Between Electrospinning Variables And To Optimize The Fiber Diameter Of Electrospun Poly (D, L-Lactide-Co-Glycolide) Scaffolds For Tissue Engineered Constructs, Yvette S. Castillo

Master's Theses

Cardiac disease causes approximately a third of the deaths in the United States. Furthermore, most of these deaths are due to a condition termed atherosclerosis, which is a buildup of plaque in the coronary arteries, leading to occlusion of normal blood flow to the cardiac muscle. Among the methods to treat the condition, stents are devices that are used to restore normal blood flow in the atherosclerotic arteries. Before advancement can be made to these devices and changes can be tested in live models, a reliable testing method that mimics the environment of the native blood vessel is needed. Dr. …


Growth And Expression Of Halorhodopsin For Application In A Protein-Based Artificial Retina, Megan Ryan Gillespie May 2012

Growth And Expression Of Halorhodopsin For Application In A Protein-Based Artificial Retina, Megan Ryan Gillespie

Honors Scholar Theses

Halorhodopsin (HR), a light-activated chloride ion pump, demonstrates potential for use as the scaffolding in an artificial retina. Retinal implants are needed to restore vision to people afflicted with ophthalmic diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). A protein-based chloride ion-patch would be utilized by the eye to create an influx of chloride ions, similar to ion concentrations in healthy retinas during the conversion of light stimuli to electrochemical signals. This protein-based retinal prosthesis will directly stimulate the bipolar cells of the retina, replacing the function of damaged photoreceptor cells. Other alternative treatments for AMD and …


Stability Of A Microvessel Subject To Structural Adaptation Of Diameter And Wall Thickness, Alisha Sarang-Sieminski, John Geddes, Ilari Shafer, Rachel Nancollas, Morgan Boes May 2012

Stability Of A Microvessel Subject To Structural Adaptation Of Diameter And Wall Thickness, Alisha Sarang-Sieminski, John Geddes, Ilari Shafer, Rachel Nancollas, Morgan Boes

John B. Geddes

Vascular adaptation—or structural changes of microvessels in response to physical and metabolic stresses—can influence physiological processes like angiogenesis and hypertension. To better understand the influence of these stresses on adaptation, Pries et al. (1998, 2001a,b, 2005) have developed a computational model for microvascular adaptation. Here, we reformulate this model in a way that is conducive to a dynamical systems analysis. Using th ese analytic methods, we determine the equilibrium geometries of a single vessel under different conditions and classify its type of stability. We demonstrate that our closed-form solution for vessel geometry exhibits the same regions of stability as the …


Engineering Strategies To Recapitulate Epithelial Morphogenesis Within Synthetic Three-Dimensional Extracellular Matrix With Tunable Mechanical Properties, Alisha Sarang-Sieminski, Yekaterina Miroshnikova, D Jorgens, L Spirio, M Auer, V Weaver Apr 2012

Engineering Strategies To Recapitulate Epithelial Morphogenesis Within Synthetic Three-Dimensional Extracellular Matrix With Tunable Mechanical Properties, Alisha Sarang-Sieminski, Yekaterina Miroshnikova, D Jorgens, L Spirio, M Auer, V Weaver

Alisha L. Sarang-Sieminski

The mechanical properties (e.g. stiffness) of the extracellular matrix (ECM) influence cell fate and tissue morphogenesis and contribute to disease progression. Nevertheless, our understanding of the mechanisms by which ECM rigidity modulates cell behavior and fate remains rudimentary. To address this issue, a number of two and three-dimensional (3D) hydrogel systems have been used to explore the effects of the mechanical properties of the ECM on cell behavior. Unfortunately, many of these systems have limited application because fiber architecture, adhesiveness and/or pore size often change in parallel when gel elasticity is varied. Here we describe the use of ECM-adsorbed, synthetic, …


Self-Assembling Short Oligopeptides And The Promotion Of Angiogenesis, Alisha Sarang-Sieminski, Daria Narmoneva, Olumuyiwa Oni, Shugang Zhang, Jonathan Gertler, Roger Kamm, Richard Lee Apr 2012

Self-Assembling Short Oligopeptides And The Promotion Of Angiogenesis, Alisha Sarang-Sieminski, Daria Narmoneva, Olumuyiwa Oni, Shugang Zhang, Jonathan Gertler, Roger Kamm, Richard Lee

Alisha L. Sarang-Sieminski

Because an adequate blood supply to and within tissues is an essential factor for successful tissue regeneration, promoting a functional microvasculature is a crucial factor for biomaterials. In this study, we demonstrate that short self-assembling peptides form scaffolds that provide an angiogenic environment promoting long-term cell survival and capillary-like network formation in three-dimensional cultures of human microvascular endothelial cells. Our data show that, in contrast to collagen type I, the peptide scaffold inhibits endothelial cell apoptosis in the absence of added angiogenic factors, accompanied by enhanced gene expression of the angiogenic factor VEGF. In addition, our results suggest that the …


Primary Sequence Of Ionic Self-Assembling Peptide Gels Affects Endothelial Cell Adhesion And Capillary Morphogenesis, Alisha Sarang-Sieminski, C. Semino, Haiyan Gong, Roger Kamm Apr 2012

Primary Sequence Of Ionic Self-Assembling Peptide Gels Affects Endothelial Cell Adhesion And Capillary Morphogenesis, Alisha Sarang-Sieminski, C. Semino, Haiyan Gong, Roger Kamm

Alisha L. Sarang-Sieminski

Appropriate choice of biomaterial supports is critical for the study of capillary morphogenesis in vitro as well as to support vascularization of engineered tissues in vivo. Self-assembling peptides are a class of synthetic, ionic, oligopeptides that spontaneously assemble into gels with an ECM-like microarchitecture when exposed to salt. In this paper, the ability of four different self-assembling peptide gels to promote endothelial cell adhesion and capillary morphogenesis is explored. Human umbilical vein endothelial cells (HUVECs) were cultured within ionic self-assembling peptide family members, RAD16-I ((RADA)4), RAD16-II ((RARADADA)2), KFE-8 ((FKFE)2), or KLD-12 ((KLDL)3). …


Biomaterial-Microvasculature Interactions, Alisha Sarang-Sieminski, Keith Gooch Apr 2012

Biomaterial-Microvasculature Interactions, Alisha Sarang-Sieminski, Keith Gooch

Alisha L. Sarang-Sieminski

The utility of implanted sensors, drug-delivery systems, immunoisolation devices, engineered cells, and engineered tissues can be limited by inadequate transport to and from the circulation. As the primary function of the microvasculature is to facilitate transport between the circulation and the surrounding tissue, interactionsbetween biomaterials and the microvasculature have been explored to understand the mechanisms controlling transport to implanted objects and ultimately improve it. This review surveys work on biomaterial-microvasculature interactions with a focus on the use of biomaterials to regulate the structure and function of the microvasculature. Several applications in which biomaterial-microvasculature interactions play a crucial role are briefly …


The Relative Magnitudes Of Endothelial Force Generation And Matrix Stiffness Modulate Capillary Morphogenesis In Vitro, Alisha Sarang-Sieminski, Robert Hebbel, Keith Gooch Apr 2012

The Relative Magnitudes Of Endothelial Force Generation And Matrix Stiffness Modulate Capillary Morphogenesis In Vitro, Alisha Sarang-Sieminski, Robert Hebbel, Keith Gooch

Alisha L. Sarang-Sieminski

When suspended in collagen gels, endothelial cells elongate and form capillary-like networks containing lumens. Human blood outgrowth endothelial cells (HBOEC) suspended in relatively rigid 3 mg/ml floating collagen gels, formed in vivo-like, thin, branched multi-cellular structures with small, thick-walled lumens, while human umbilical vein endothelial cells (HUVEC) formed fewer multi-cellular structures, had a spread appearance, and had larger lumens. HBOEC exert more traction on collagen gels than HUVEC as evidenced by greater contraction of floating gels. When the stiffness of floating gels was decreased by decreasing the collagen concentration from 3 to 1.5 mg/ml, HUVEC contracted gels more and formed …


Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu Apr 2012

Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu

Weiqiang Chen

Human embryonic stem cells (hESCs) have great potentials for future cell-based therapeutics. However, their mechanosensitivity to biophysical signals from the cellular microenvironment is not well characterized. Here we introduced an effective microfabrication strategy for accurate control and patterning of nanoroughness on glass surfaces. Our results demonstrated that nanotopography could provide a potent regulatory signal over different hESC behaviors, including cell morphology, adhesion, proliferation, clonal expansion, and self-renewal. Our results indicated that topological sensing of hESCs might include feedback regulation involving mechanosensory integrin-mediated cell matrix adhesion, myosin II, and E-cadherin. Our results also demonstrated that cellular responses to nanotopography were cell-type …


Evaluation Of Decellularization Procedures For Porcine Arteries, Charles Clapp Apr 2012

Evaluation Of Decellularization Procedures For Porcine Arteries, Charles Clapp

Biomedical Engineering

Coronary artery disease has become the leading cause of death in the United States, with over 425,000 deaths in 2006. Stenting has evolved into the preferred preventative technique for myocardial infarction by opening up an occluded artery, due to its low invasiveness compared to the alternative of coronary artery bypass grafting. Bare metal stents have been improved by coating with anti-proliferative drugs to advance their effects, but even drug eluting stents still have a risk of restenosis, thrombus formation, and necessary revascularization. Continual advancement in stent design necessitates faster, effective pre-clinical evaluation techniques. Kristen Cardinal, Ph.D., developed the blood vessel …


Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer Apr 2012

Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer

Electronic Thesis and Dissertation Repository

The objective of this research project was to develop a drug delivery system for recombinant human erythropoietin (rHu-EPO), a glycoprotein hormone used in the treatment of renal anaemia and chemotherapy induced anaemia, using the biopolymer chitosan as the base component. Two types of chitosan nanoparticles were produced through ionotropic gelation using flush mixing with either tripolyphosphate (TPP) or carrageenan polymer. Chitosan-TPP and chitosan-carrageenan nanoparticles were generated under a variety of conditions to evaluate the effects of chitosan concentration, chitosan to anion mass ratio and solution pH on the nanoparticle characteristics of particle diameter, surface charge and particle size distribution. A …


Bacterial Cellulose Templates For Nano-Hydroxyapatite Fibre Synthesis, Jordan A. Demello Feb 2012

Bacterial Cellulose Templates For Nano-Hydroxyapatite Fibre Synthesis, Jordan A. Demello

Electronic Thesis and Dissertation Repository

Guided bone regeneration is a medical procedure which induces in vivo re-growth of bone using membranes and osteopromoting fillers. In this work, bacterial cellulose fibers were isolated and used as a basis for biomimetic hydroxyapatite growth, with the ultimate goal of producing GBR filler materials. Acetobacter xylinum generated BC using various carbon sources. Fibers were treated with phosphoric acid to phosphorylate functional groups and preconditioned with calcium to nucleate the HA. Simulated body fluid (SBF) furthered the growth. Over 14 days, the product was characterized via EDX, SEM, FTIR, and XRD. The effect of media composition, phosphorylation time, pretreatment, and …


A New Tool To Assess The Mechanical Properties Of Bone Due To Collagen Degradation, C. Wynnyckyj, S. Omelon, K. Savage, M. Damani, Debbie Chachra, Marc Grynpas Feb 2012

A New Tool To Assess The Mechanical Properties Of Bone Due To Collagen Degradation, C. Wynnyckyj, S. Omelon, K. Savage, M. Damani, Debbie Chachra, Marc Grynpas

Debbie Chachra

Current clinical tools for evaluating fracture risk focus only on the mineral phase of bone. However, changes in the collagen matrix may affect bone mechanical properties, increasing fracture risk while remaining undetected by conventional screening methods such as dual energy x-ray absorptiometry (DXA) and quantitative ultrasound (QUS). The mechanical response tissue analyzer (MRTA) is a non-invasive, radiation-free potential clinical tool for evaluating fracture risk. The objectives of this study were two-fold: to investigate the ability of the MRTA to detect changes in mechanical properties of bone as a result of treatment with 1 M potassium hydroxide (KOH) and to evaluate …


Investigation Of A New Material For Heart Valve Tissue Engineering, Claire Brougham, Nian Shen, Allison Cudsworth, Thomas Flanagan, Stefan Jockenhoevel, Fergal O'Brien Jan 2012

Investigation Of A New Material For Heart Valve Tissue Engineering, Claire Brougham, Nian Shen, Allison Cudsworth, Thomas Flanagan, Stefan Jockenhoevel, Fergal O'Brien

Conference Papers

No abstract provided.


Mineralization Potential Of Electrospun Pdo-Hydroxyapatite-Fibrinogen Blended Scaffolds, Isaac Rodriguez, Parthasarathy A. Madurantakam, Jennifer M. Mccool, Scott A. Sell, Hu Yang, Peter C. Moon, Gary L. Bowlin Jan 2012

Mineralization Potential Of Electrospun Pdo-Hydroxyapatite-Fibrinogen Blended Scaffolds, Isaac Rodriguez, Parthasarathy A. Madurantakam, Jennifer M. Mccool, Scott A. Sell, Hu Yang, Peter C. Moon, Gary L. Bowlin

Biomedical Engineering Publications

The current bone autograft procedure for cleft palate repair presents several disadvantages such as limited availability, additional invasive surgery, and donor site morbidity. The present preliminary study evaluates the mineralization potential of electrospun polydioxanone:nano-hydroxyapatite : fibrinogen (PDO : nHA : Fg) blended scaffolds in different simulated body fluids (SBF). Scaffolds were fabricated by blending PDO : nHA : Fg in the following percent by weight ratios: 100 : 0 : 0, 50 : 25 : 25, 50 : 50 : 0, 50 : 0 : 50, 0 : 0 : 100, and 0 : 50 : 50. Samples were immersed …


The Use Of An In Vitro 3d Melanoma Model To Predict In Vivo Plasmid Transfection Using Electroporation, Benadette Marrero, Richard Heller Jan 2012

The Use Of An In Vitro 3d Melanoma Model To Predict In Vivo Plasmid Transfection Using Electroporation, Benadette Marrero, Richard Heller

Bioelectrics Publications

A large-scale in vitro 3D tumor model was generated to evaluate gene delivery procedures in vivo. This 3D tumor model consists of a "tissue-like" spheroid that provides a micro-environment supportive of melanoma proliferation, allowing cells to behave similarly to cells in vivo. This functional spheroid measures approximately 1 cm in diameter and can be used to effectively evaluate plasmid transfection when testing various electroporation (EP) electrode applicators. In this study, we identified EP conditions that efficiently transfect green fluorescent protein (GFP) and interleukin 15 (IL-15) plasmids into tumor cells residing in the 3D construct. We found that plasmids …


A Preliminary Study On The Potential Of Manuka Honey And Platelet-Rich Plasma In Wound Healing, Scott A. Sell, Patricia S. Wolfe, Andrew J. Spence, Isaac A. Rodriguez, Jennifer M. Mccoll, Rebecca L. Petrella, Koyal Garg, Jeffery J. Ericksen, Gary L. Bowlin Jan 2012

A Preliminary Study On The Potential Of Manuka Honey And Platelet-Rich Plasma In Wound Healing, Scott A. Sell, Patricia S. Wolfe, Andrew J. Spence, Isaac A. Rodriguez, Jennifer M. Mccoll, Rebecca L. Petrella, Koyal Garg, Jeffery J. Ericksen, Gary L. Bowlin

Nursing Faculty Publications

Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, …


Effect Of Extracellular Matrix (Ecm) Protein Micropatterns On The Behavior Of Human Neuroblastoma Cells, Ishwari Poudel Dec 2011

Effect Of Extracellular Matrix (Ecm) Protein Micropatterns On The Behavior Of Human Neuroblastoma Cells, Ishwari Poudel

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Recent advances in patterning techniques and emerging surface microtechnologies have allowed cell micropatterning to control spatial location of the cells on a surface as well as cell shape, attachment area, and number of contacting neighbor cells. These parameters play important roles in cell cellular behaviors. Cell micropatterning has thus become one of the most important strategies for biomedical applications, such as, tissue engineering, diagnostic immunoassays, lab-on-chip devices, bio-sensing, etc., and cell biology studies as well. For neuronal cells, there have been attempts to distribute neuronal cells on specific patterns to control cell-to-cell interaction. However, there have been very limited understanding …


Differential Gene Expression To Investigate The Effects Of Low-Level Electrochemical Currents On Bacillus Subtilis., Robert Szkotak, Tagbo H R Niepa, Nikhil Jawrani, Jeremy L. Gilbert, Marcus B. Jones, Dacheng Ren Nov 2011

Differential Gene Expression To Investigate The Effects Of Low-Level Electrochemical Currents On Bacillus Subtilis., Robert Szkotak, Tagbo H R Niepa, Nikhil Jawrani, Jeremy L. Gilbert, Marcus B. Jones, Dacheng Ren

Biomedical and Chemical Engineering - All Scholarship

With the emergence and spread of multidrug resistant bacteria, effective methods to eliminate both planktonic bacteria and those embedded in surface-attached biofilms are needed. Electric currents at uA-mA/cm2 range are known to reduce the viability of bacteria. However, the mechanism of such effects is still not well understood. In this study, Bacillus subtilis was used as the model Gram-positive species to systematically investigate the effects of electrochemical currents on bacteria including the morphology, viability, and gene expression of planktonic cells, and viability of biofilm cells. The data suggest that weak electrochemical currents can effectively eliminate B. subtilis both as planktonic …


Photolithographic Surface Micromachining Of Polydimethylsiloxane (Pdms), Weiqiang Chen, Raymond H. W. Lam, Jianping Fu Nov 2011

Photolithographic Surface Micromachining Of Polydimethylsiloxane (Pdms), Weiqiang Chen, Raymond H. W. Lam, Jianping Fu

Weiqiang Chen

A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O2 plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our …


Impact Isolation Of Training Shoes, Nicci Daly, Stephen Tiernan Sep 2011

Impact Isolation Of Training Shoes, Nicci Daly, Stephen Tiernan

Conference Papers

ABSTRACT The increase in popularity of physical activities from fun runs to competitive marathons has lead to a huge industry in sports footwear, which is now worth $20bn annually. There is a resultant increase in injuries, largely due to the repeated and prolonged nature of the impact forces experienced by the leg. Clinical data indicates that the knee is the most common site of running related injury, followed by the lower leg and foot. The complexity of the ankle structure means that injuries are acute and the success rates of replacements are very low. Therefore research in this area is …


Improved Manufacturing Methods Of Bovine Femur Samples For Ultrasonic Testing And Assessment Of Materials Through Contract Angle Measurement, Kevin Mathew Lopez Galang Sep 2011

Improved Manufacturing Methods Of Bovine Femur Samples For Ultrasonic Testing And Assessment Of Materials Through Contract Angle Measurement, Kevin Mathew Lopez Galang

Biomedical Engineering

At California Polytechnic State University of San Luis Obispo (Cal Poly), the Biomedical Engineering department (BMED) requires its students to take the course listed as “BMED 420: Principles of Biomaterial Designs.” BMED 420 has a required laboratory section every week throughout the duration of the course that is meant to be a supplemental tool for learning. During the lab sections, students perform experiments and exercises that are currently being implemented in the industry. Despite accuracy of the methods and experiments relative to their use in the industry, there is always room for improvement. The objective of this project will illustrate …


Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann Aug 2011

Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann

Dissertations & Theses (Open Access)

Bone marrow is a target organ site involved in multiple diseases including myeloproliferative disorders and hematologic malignancies and metastases from breast and prostate. Most of these diseases are characterized with poor quality of life, and the treatment options are only palliative due to lack of delivery mechanisms for systemically injected drugs which results in dose limitation to protect the healthy hematopoietic cells. Therefore, there is a critical need to develop effective therapeutic strategies that allow for selective delivery of therapeutic payload to the bone marrow. Nanotechnology-based drug delivery systems provide the opportunity to deliver drugs to the target tissue while …


Structure And Optical Properties Of Self-Assembled Multicomponent Plasmonic Nanogels, Tao Cong, Satvik N. Wani, Peter Anthony Paynter, Radhakrishna Sureshkumar Jul 2011

Structure And Optical Properties Of Self-Assembled Multicomponent Plasmonic Nanogels, Tao Cong, Satvik N. Wani, Peter Anthony Paynter, Radhakrishna Sureshkumar

Biomedical and Chemical Engineering - All Scholarship

Multicomponent plasmonic nanogels (PNGs) capable of broadband absorption of light in the 400-700 nm wavelength range were synthesized by the self-assembly of metal nanoparticles with wormlike surfactant micelles. Small angle x-ray scattering and rheological experiments suggest that the nanoparticles bridge micelle fragments to aid the formation a stable gel phase with exceptional color uniformity. Their optical absorbance could be robustly tuned by changing the nanoparticle type (Au/Ag), size, shape, and/or concentration. The PNGs have relatively low viscosity and are thermoreversible. Potential applications to the manufacturing of coatings and interfaces for solar energy harvesting and reconfigurable optical devices can be envisioned.


Characterization And Implementation Of A Decellularized Porcine Vessel As A Biologic Scaffold For A Blood Vessel Mimic, Aubrey N. Smith Jun 2011

Characterization And Implementation Of A Decellularized Porcine Vessel As A Biologic Scaffold For A Blood Vessel Mimic, Aubrey N. Smith

Master's Theses

Every 34 seconds, someone in the United States suffers from a heart attack. Most heart attacks are caused by atherosclerotic build up in the coronary arteries, occluding normal blood flow. Balloon angioplasty procedures in combination with a metal stent often result in successful restoration of normal blood flow. However, bare metal stents often lead to restenosis and other complications. To compensate for this problem, industry has created drug-eluting stents to promote healing of the artery wall post stenting. These stents are continually advancing toward better drug-eluting designs and methods, resulting in a need for fast and reliable pre-clinical testing modalities. …


Development Of An In-Vitro Hyperglycemic Tissue Engineered Blood Vessel Mimic, Brian C. Wong Jun 2011

Development Of An In-Vitro Hyperglycemic Tissue Engineered Blood Vessel Mimic, Brian C. Wong

Biomedical Engineering

No abstract provided.


Characterization And Implementation Of Low Intensity Pulsed Ultrasound As A Tool To Apply Physical Load To Scaffolds And Bone Cells For Fracture Repair, Scott Frazee May 2011

Characterization And Implementation Of Low Intensity Pulsed Ultrasound As A Tool To Apply Physical Load To Scaffolds And Bone Cells For Fracture Repair, Scott Frazee

Master's Theses

One current challenge in treating bone fractures is the effective treatment of non-unions and delayed unions. Low Intensity Pulsed Ultrasound (LIPUS) has been approved by the FDA to treat fresh fractures since 1994 and non-unions since 2000 and is an attractive treatment option because it is non-invasive. The mechanism by which it works, however, is not well understood; what is known is largely confined to the resultant changes in chemical output of cells. In this thesis several concepts and techniques were brought together to investigate the following hypothesis: LIPUS produces a measurable physical load that results in measurable deformation and …


Mammary Epithelial Cell Growth On A Three-Dimensional Scaffold In An Operating Bioreactor, Melissa Marie Davalle May 2011

Mammary Epithelial Cell Growth On A Three-Dimensional Scaffold In An Operating Bioreactor, Melissa Marie Davalle

Master's Theses

Mammary epithelial cells are highly efficient secreting cells. With genetic engineering, the uses of these cells could be endless. Research is being conducted on these cells to determine their full potential to the biotech industry.

This paper investigates whether bovine epithelial mammary cells can survive in glutaraldehyde-treated gelatin tubes in an operating bioreactor. Many bioreactors were developed and tested to suit the needs of the cells. Procedures were created and carried out to ensure sterility of the bioreactors. Bovine mammary epithelial cells were implanted in the bioreactors and samples of their growth were taken over time.


Design And Development Of Two Test Fixtures To Test The Longitudinal And Transverse Tensile Properties Of Small Diameter Tubular Polymers, Carolyn Berry Apr 2011

Design And Development Of Two Test Fixtures To Test The Longitudinal And Transverse Tensile Properties Of Small Diameter Tubular Polymers, Carolyn Berry

Master's Theses

Hundreds of thousands of vascular bypass grafts are implanted in the United States every year, but there has yet to be an ideal graft material to substitute for one’s own autologous vessel. Many synthetic materials have been shown to be successful vessel replacements; however, none have been proven to exhibit the same mechanical properties as native vessels, one of the most important criteria in selecting a vascular graft material. Part of this issue is due to the fact that, currently, there is no “gold standard” for testing the longitudinal and transverse tensile properties of small diameter tubular materials. While there …