Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomaterials

Fabrication And Characterization Of Lactobacillus Crispatus Containing Bioprints For Bacterial Vaginosis Application., Anthony J. Kyser May 2022

Fabrication And Characterization Of Lactobacillus Crispatus Containing Bioprints For Bacterial Vaginosis Application., Anthony J. Kyser

Electronic Theses and Dissertations

Bacterial vaginosis (BV) is a condition in which healthy lactobacilli are replaced by an overabundance of pathogenic bacteria in the female reproductive tract. Current antibiotic treatments often fail to “cure” infection, resulting in recurrence in more than 50% of women, 6 months post-treatment. Recently, probiotics have demonstrated promise to restore vaginal health; however, as with other active agents, delivery requires once-to-twice daily administration. Recently, three-dimensional (3D)-bioprinting has enabled the fabrication of well-defined cell-laden architectures with tunable agent release, thereby presenting a novel approach with which to deliver probiotics. One promising bioink, gelatin alginate, was selected for study, due to its …


A Highly Conductive, Flexible, And 3d-Printable Carbon Nanotube-Elastomer Ink For Additive Bio-Manufacturing, Andy Shar, Phillip Glass, Daeha Joung Ph.D. Jan 2022

A Highly Conductive, Flexible, And 3d-Printable Carbon Nanotube-Elastomer Ink For Additive Bio-Manufacturing, Andy Shar, Phillip Glass, Daeha Joung Ph.D.

Undergraduate Research Posters

The synthesis of a highly conductive, flexible, 3D-printable, and biocompatible ink has been of great interest in the field of bio-based additive manufacturing. Various applications include ultra-sensitive, microscale tactile sensors, patient-customizable scaffolds for cardiac and nerve tissue regeneration, and flexible electrocardiogram (ECG) electrodes. Here, a novel elastomeric carbon nanocomposite is presented consisting of amino-functionalized carbon nanotubes (CNT-NH2) homogenously dispersed in a one-part room-temperature vulcanizing (RTV) silicone matrix. The use of acetone as a swelling solvent aids in electrical percolation through the elastomer matrix. CNT-NH2 ratios can be tuned to fit various needs; higher tensile strength is favored …


Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao Jan 2020

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

The mechanotransduction of cells is the intrinsic ability of cells to convert the mechanical signals provided by the surrounding matrix and other cells into biochemical signals that affect several distinct processes such as tumorigenesis, wound healing, and organ formation. The use of biomaterials as an artificial scaffold for cell attachment, differentiation and proliferation provides a tool to modulate and understand the mechanotransduction pathways, develop better in vitro models and clinical remedies. The effect of topographical cues and stiffness was investigated in fibroblasts using polycaprolactone (PCL)- Polyaniline (PANI) based scaffolds that were fabricated using a self-assembly method and electrospinning. Through this …


Liver Cancer: Current And Future Trends Using Biomaterials, Sue Anne Chew, Stefania Moscato, Sachin George, Bahareh Azimi, Serena Danti Dec 2019

Liver Cancer: Current And Future Trends Using Biomaterials, Sue Anne Chew, Stefania Moscato, Sachin George, Bahareh Azimi, Serena Danti

Health & Biomedical Sciences Faculty Publications and Presentations

Hepatocellular carcinoma (HCC) is the fifth most common type of cancer diagnosed and the second leading cause of death worldwide. Despite advancement in current treatments for HCC, the prognosis for this cancer is still unfavorable. This comprehensive review article focuses on all the current technology that applies biomaterials to treat and study liver cancer, thus showing the versatility of biomaterials to be used as smart tools in this complex pathologic scenario. Specifically, after introducing the liver anatomy and pathology by focusing on the available treatments for HCC, this review summarizes the current biomaterial-based approaches for systemic delivery and implantable tools …


Harnessing Notch Signaling For Biomaterial Scaffold-Based Bone Regeneration, Helena P. Lysandrou, Chunhui Jiang, Naagarajan Narayanan, Shihuan Kuang, Meng Deng Aug 2015

Harnessing Notch Signaling For Biomaterial Scaffold-Based Bone Regeneration, Helena P. Lysandrou, Chunhui Jiang, Naagarajan Narayanan, Shihuan Kuang, Meng Deng

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bone fracture has recently become prevalent, especially with an increasingly aging population. Current bone grafts procedures, including autografts and allografts, are hindered by multiple factors, such as limited supplies and inconsistent bone healing. Scaffold-based bone tissue engineering emerges as a prospective strategy to aid in bone regeneration through delivery of growth factors such as bone morphogenic proteins (BMPs). However, the use of BMPs suffers from several drawbacks such as protein instability and immunogenicity. Therefore, there exists a great need for the development of novel therapies to promote bone healing. Notch signaling, a pathway critical for cell-fate determination has been shown …


Biological Implications Of Satellite Cells For Scaffold-Based Muscle Regenerative Engineering, Maggie R. Del Ponte, Charter Chain, Meng Deng Dr., Feng Yue Dr., Shihuan Kuang Dr. Aug 2014

Biological Implications Of Satellite Cells For Scaffold-Based Muscle Regenerative Engineering, Maggie R. Del Ponte, Charter Chain, Meng Deng Dr., Feng Yue Dr., Shihuan Kuang Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Satellite cells are anatomically localized along the surface of muscle fibers and have been regarded as a population of muscle-specific progenitors that are responsible for muscle regeneration. In response to muscle injuries, satellite cells are activated to enter the cell cycle, then proliferate and differentiate into mature muscle cells to regenerate damaged myofibers. Unfortunately, this natural repair mechanism is interrupted in conditions such as muscle degenerative diseases or volumetric muscle loss. The function of stem cells is regulated by signals from their local microenvironment which is called the stem cell niche. Current satellite cell-based strategies such as direct cell transplantation …


Functional Co-Substituted Poly[(Amino Acid Ester)Phosphazene] Biomaterials, Amanda L. Baillargeon Jul 2014

Functional Co-Substituted Poly[(Amino Acid Ester)Phosphazene] Biomaterials, Amanda L. Baillargeon

Electronic Thesis and Dissertation Repository

The development of new and improved biomaterials is essential for tissue engineering and regenerative medicine applications. Amino acid-based polyphosphazenes are being explored as scaffold materials for tissue engineering applications due to their non-toxic degradation products and tunable material properties. This work focuses on the synthesis of non-functional and novel functional poly[(amino acid ester)phosphazene]s using a facile method of thermal ring opening polymerization followed by one-pot room temperature substitution. The family of polyphosphazenes developed in this work is based on L-alanine (PNEAs), L-phenylalanine (PNEFs), and L-methionine (PNEMs) with L-glutamic acid imparting the functionality. Characterization of these materials demonstrated that the one-pot …


Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson Jun 2013

Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson

Biomedical Engineering

Poly(lactic-co-glycolic acid) (PLGA) is one of the most commonly used copolymers for electrospinning in tissue engineering applications. However, most research has not focused on the copolymer itself in regards to how long it can be used effectively and if varying the concentrations of polylactic acid (PLA) and polyglycolic acid (PGA) affect the resulting properties. Electrospinning is the method we use to create the three-dimensional constructs, or “scaffolds”, for the blood vessel mimic (BVM) in the tissue engineering lab. The aim of our project was to investigate if the morphology and mechanical properties of the scaffolds changed over time when they …