Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Biomaterials

Ti-6al-4v Β Phase Selective Dissolution: In Vitro Mechanism And Prediction, Michael A Kurtz Dec 2023

Ti-6al-4v Β Phase Selective Dissolution: In Vitro Mechanism And Prediction, Michael A Kurtz

All Dissertations

Retrieval studies document Ti-6Al-4V β phase dissolution within total hip replacement systems. A gap persists in our mechanistic understanding and existing standards fail to reproduce this damage. This thesis aims to (1) elucidate the Ti-6Al-4V selective dissolution mechanism as functions of solution chemistry, electrode potential and temperature; (2) investigate the effects of adverse electrochemical conditions on additively manufactured (AM) titanium alloys and (3) apply machine learning to predict the Ti-6Al-4V dissolution state. We hypothesized that (1) cathodic activation and inflammatory species (H2O2) would degrade the Ti-6Al-4V oxide, promoting dissolution; (2) AM Ti-6Al-4V selective dissolution would occur …


An Electrochemical Analysis Of Fretting Corrosion In Metal-On-Metal Hip Implants Subjected To High Impaction Loads, Joe Morin, Timothy L. Norman, Thomas K. Fehring Apr 2017

An Electrochemical Analysis Of Fretting Corrosion In Metal-On-Metal Hip Implants Subjected To High Impaction Loads, Joe Morin, Timothy L. Norman, Thomas K. Fehring

The Research and Scholarship Symposium (2013-2019)

The metal-on-metal total hip arthroplasty, a procedure where the hip joint is replaced by a femoral prosthesis with a metal femoral head and a metal socket, has been a popular option for patients requiring a hip joint replacement. Metal on metal hip implants have been a successful implant design until recently where there has been an increased number of failures of this type of implant due to fretting corrosion, believed to be caused from the use of large femoral heads. Fretting corrosion in hip implants results from cyclic micromotion at the taper-trunnion interface; this interface motion removes the protective oxidation …


The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson May 2015

The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson

FIU Electronic Theses and Dissertations

Because of their excellent mechanical, tribological, and electrochemical properties, Cobalt Chromium Molybdenum alloys have been used as the material for both the stem and head of modular hip implants. Corrosion is one mechanism by which metal debris, from these implants, is generated, which can lead to adverse events that requires revision surgery. Manufacturing process such as wrought, as-cast, and powder metallurgy influences the microstructure, material properties, and performance of these implants

The current research focuses on analyzing the microstructure of CoCrMo alloys from retrieved hip implants with optical and scanning electron microscopy. Additionally, energy disperse spectroscopy was utilized to determine …


In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr Apr 2015

In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr

FIU Electronic Theses and Dissertations

The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown …


A Rubric For Electrochemical Testing Of Metallic Biomaterials, Frederick G. De La Fuente Aug 2014

A Rubric For Electrochemical Testing Of Metallic Biomaterials, Frederick G. De La Fuente

Master's Theses

Corrosion is a major factor for the failure of metallic medical implants. Testing a metal’s suseptability to corrosion prior to implantation is key to a successful implantation. Electrochemical processes were used in this study to evaluate the characteristics of corrosion of both AISI 316 stainless steel and titanium alloy Ti6Al4V, welded and non-welded. Linear, potentiodynamic, and cyclic polarization curves were produced by the PARC 2273 potentiostat showing the corrosion tendencies of the metals in four unique solutions 3.5% NaCl, 0.35% NaCl, phosphate buffered saline solution (PBS), and Butterfield phosphate buffered solution (BPS). The concentration of chloride ions in solutions affected …


Iron-Magnesium Alloy Bioabsorbable Blood Stent, Kaitlyn Jarry, L Stanciu Oct 2013

Iron-Magnesium Alloy Bioabsorbable Blood Stent, Kaitlyn Jarry, L Stanciu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bioabsorbable materials are fairly new and proper alloys for implantation in the body have not yet been established. There are a few polymers that have showed promise, but they do not provide the proper mechanical support that metal does. These materials would be used to create devices such as blood stents and orthopedic screws. Investigation into the properties of different alloys can help to establish a material that can be used for implanted devices that are only needed for a limited amount of time. In order to investigate these alloys many different experiments will to be run to test the …


An Assessment Of Novel Biodegradable Magnesium Alloys For Endovascular Biomaterial Applications, Dharam Persaud-Sharma Jun 2013

An Assessment Of Novel Biodegradable Magnesium Alloys For Endovascular Biomaterial Applications, Dharam Persaud-Sharma

FIU Electronic Theses and Dissertations

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast …


Corrosion Of Stainless Steel 316l And Astm F75 Cobalt Chromium Alloy During Immersion Testing In Silver Salt Solutions, Meagan Higgins Jun 2012

Corrosion Of Stainless Steel 316l And Astm F75 Cobalt Chromium Alloy During Immersion Testing In Silver Salt Solutions, Meagan Higgins

Materials Engineering

This study evaluates the potential effects of silver salts on biocompatible metals used for prostheses during the chemical reduction process to produce a silver antimicrobial layer on the metal’s surface. Samples of two biocompatible metals were obtained: Stainless Steel 316L and ASTM F75 Cobalt Chromium Alloy. Three different silver salts were also acquired: silver nitrate, silver sulfadiazine, and silver chloride. Specimens of each metal were cut to size using a 4-1/2 inch aluminum oxide, 40 grit, cut off wheel for metal, attached to a Dewalt Angle Grinder. The biocompatible metal samples were then subject to either Solution 1, water with …


Electrochemical Investigation Of Chromium Nanocarbide Coated Ti-6al-4v And Co-Cr-Mo Alloy Substrates, Viswanathan Swaminathan, Haitong Zeng, Daniel Lawrynowicz, Zongtao Zhang, Jeremy L. Gilbert Jan 2011

Electrochemical Investigation Of Chromium Nanocarbide Coated Ti-6al-4v And Co-Cr-Mo Alloy Substrates, Viswanathan Swaminathan, Haitong Zeng, Daniel Lawrynowicz, Zongtao Zhang, Jeremy L. Gilbert

Biomedical and Chemical Engineering - All Scholarship

This study investigated the electrochemical behavior of chromium nano-carbide cermet coating applied on Ti–6Al–4V and Co–Cr–Mo alloys for potential application as wear and corrosion resistant bearing surfaces. The cermet coating consisted of a highly heterogeneous combination of carbides embedded in a metal matrix. The main factors studied were the effect of substrate (Ti–6Al–4V vs. Co–Cr–Mo), solution conditions (physiological vs. 1 M H2O2 of pH 2), time of immersion (1 vs. 24 h) and post coating treatments (passivation and gamma sterilization). The coatings were produced with high velocity oxygen fuel (HVOF) thermal spray technique at atmospheric conditions to …


The Effect Of Particle Surface Area To Volume Ratio On Ion Release From Cocr Spheres, Darin J. Grandfield Jun 2009

The Effect Of Particle Surface Area To Volume Ratio On Ion Release From Cocr Spheres, Darin J. Grandfield

Master's Theses

In 2005, over 200,000 Americans underwent a hip arthroplasty, the replacement of a hip joint with an artificial prosthesis. Of these arthroplasties, metal-on-metal type implants represent an increasing usage percentage. Metal-on-metal implants are selected largely for their low volumetric wear rate, durability, and resistance to corrosion. In spite of these advantages, little is known concerning the long-term consequences of heavy metal alloy use in the body, although early research indicates potentially carcinogenic results. This thesis is a preliminary investigation into these long term effects and their root causes.

An improved comprehension of the corrosion kinetics and the rate of ion …


Focal Osteolysis At The Junctions Of A Modular Stainless-Steel Femoral Intramedullary Nail, Darron M. Jones, Lawrence Marsh, James V. Nepola, Joshua J. Jacobs, Anastasia K. Skipor, Robert M. Urban, Jeremy L. Gilbert, Josheph A. Buckwater Jan 2001

Focal Osteolysis At The Junctions Of A Modular Stainless-Steel Femoral Intramedullary Nail, Darron M. Jones, Lawrence Marsh, James V. Nepola, Joshua J. Jacobs, Anastasia K. Skipor, Robert M. Urban, Jeremy L. Gilbert, Josheph A. Buckwater

Biomedical and Chemical Engineering - All Scholarship

Background:

During routine follow-up of patients treated with a three-piece stainless-steel modular femoral nail, osteolysis and periosteal reaction around the modular junctions of some of the nails were noted on radiographs. The purpose of this study was to evaluate the prevalence, etiology, and clinical relevance of these radiographic findings.

Methods:

Forty-four femoral fractures or nonunions in forty-two patients were treated with a modular stainless-steel femoral intramedullary nail. Seventeen nails were excluded, leaving twenty-seven intramedullary nails in twenty-seven patients for this study. All patients had had a femoral diaphyseal fracture; nineteen had had an acute fracture and eight, a nonunion. These …


Current Concepts Review - Corrosion Of Metal Orthopaedic Implants, Joshua J. Jacobs, Jeremy L. Gilbert, Robert M. Urban Jan 1998

Current Concepts Review - Corrosion Of Metal Orthopaedic Implants, Joshua J. Jacobs, Jeremy L. Gilbert, Robert M. Urban

Biomedical and Chemical Engineering - All Scholarship

No abstract provided.