Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Conference

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 28 of 28

Full-Text Articles in Biomedical Engineering and Bioengineering

Multimode Point Spectroscopy For Food Authentication, Sayed Asaduzzaman, Nicholas Mackinnon, Hossein Kashani Zadeh Feb 2024

Multimode Point Spectroscopy For Food Authentication, Sayed Asaduzzaman, Nicholas Mackinnon, Hossein Kashani Zadeh

SDSU Data Science Symposium

Enhancing food quality measurement is a necessity to guarantee food safety and adherence to health regulations. Current methods involve lab testing which are time-consuming, costly, destructive and require skilled workers. Spectroscopy has the potential to overcome these challenges. This study employs a multi-mode point spectroscopy method to distinguish food products according to their spectral characteristics,. The system records fluorescence, excited at 365 and 405 nm, visible-near infrared (Vis-NIR) and short-wave infrared (SWIR) spectra. The three main subjects of the study are olive oil, milk, and honey. Samples were kept in a transparent cell culture pot, and Gray and White Spectralon …


Controlled Radiation Capsule For Precision And Rapid Cancer Treatment, Hoseon Lee, Zsolt Kollar, Bailey R. White, Junia Nguyen, David Roque, Sowjanya Palagani Nov 2023

Controlled Radiation Capsule For Precision And Rapid Cancer Treatment, Hoseon Lee, Zsolt Kollar, Bailey R. White, Junia Nguyen, David Roque, Sowjanya Palagani

Symposium of Student Scholars

This research aims to transform cancer treatment through the optimization of brachytherapy, with a focus on reducing treatment duration, setup complexities, and financial burdens, all while emphasizing patient safety. Patients living at a distance from radiation clinics, particularly those undergoing extended Low Dose Radiation brachytherapy, often struggle with the formidable financial challenges associated with securing nearby accommodations. In response to these issues, the research introduces a radiation capsule designed to condense the conventional six-month treatment period to approximately just one week, thereby significantly reducing the duration of required accommodations. This capsule is especially relevant considering the construction cost of $40 …


Development Of A Fish Robot Equipped With Novel 3d-Printed Soft Bending Actuators, Steven Steele, Jorge Diaz Rodriguez, Sharun Sripathy, Turaj Ashuri, Saleh Gharaie, Yusun Chang, Amir Ali Amiri Moghadam Apr 2023

Development Of A Fish Robot Equipped With Novel 3d-Printed Soft Bending Actuators, Steven Steele, Jorge Diaz Rodriguez, Sharun Sripathy, Turaj Ashuri, Saleh Gharaie, Yusun Chang, Amir Ali Amiri Moghadam

Symposium of Student Scholars

This paper reports on design and fabrication of a novel soft fish robot. Application of soft actuators for the fish tail will generates continuum bending motion which resembles the natural motion of the fish. However, most soft actuator mechanisms are complex and have low efficiency. Thus, to address this issue we have developed a 3D printed soft bending actuator which can be actuated with an electromotor. The basic design idea of the soft bending actuator is explained, and iteration of the design showed to create the desired motion for the soft tail. The soft actuator has been successfully integrated with …


Portable Diffuse Reflectance Spectroscopy For Non-Invasive And Quantitative Assessment Of The Parathyroid Glands Viability During Surgery, Mark Romine, Linh Luong, Alex Moazzen, Katie Cho, Paul Lee Apr 2023

Portable Diffuse Reflectance Spectroscopy For Non-Invasive And Quantitative Assessment Of The Parathyroid Glands Viability During Surgery, Mark Romine, Linh Luong, Alex Moazzen, Katie Cho, Paul Lee

Symposium of Student Scholars

Portable Diffuse Reflectance Spectroscopy for Non-invasive and Quantitative Assessment of the Parathyroid Glands Viability During Surgery

Mark Romine, Linh Luong, Alex Moazzen, Katie Cho and Paul Lee

The parathyroid glands (PTGs) are responsible for the regulation of calcium levels in the blood by secreting a parathyroid hormone. This parathyroid hormone then regulates the body’s absorption, storage, and secretion of calcium, which can directly affect the way muscles and nerves operate. PTGs are often at risk of damage, or accidental removal during thyroid surgeries, because it is challenging to identify PTGs and to determine their viability. Current methods of visual inspections …


Wireless, Handheld Diffuse Reflectance Spectroscopy To Quantify Tissue Microvascular Hemodynamics, Linh Luong, Alex Moazzen, Mark Romine, Katie Cho, Paul Lee Apr 2023

Wireless, Handheld Diffuse Reflectance Spectroscopy To Quantify Tissue Microvascular Hemodynamics, Linh Luong, Alex Moazzen, Mark Romine, Katie Cho, Paul Lee

Symposium of Student Scholars

Diffuse Reflectance Spectroscopy (DRS) is a non-invasive optical method to characterize tissue optical properties for disease diagnosis and health monitoring. Two optical fibers are often used in a DRS system: one to deliver light to the tissue and the other to gather diffuse reflectance spectra, which provide quantitative details about the structure and composition of the tissue. The conventional DRS system, however, is expensive, bulky, and composed of fragile optical fibers and multiple electrical connections. Here we propose to build a wireless, handheld, and fiber-less diffuse optical spectroscopy system. Unfortunately, the diffusion approximation utilized for data analysis of the conventional …


Small-Separation Speckle Contrast Optical Spectroscopy For Intraoperative Assessment Of Parathyroid Glands Viability During Thyroid Surgery, Connor Berger Dec 2022

Small-Separation Speckle Contrast Optical Spectroscopy For Intraoperative Assessment Of Parathyroid Glands Viability During Thyroid Surgery, Connor Berger

Symposium of Student Scholars

The parathyroid glands (PTGs) are often damaged during thyroid surgeries due to a lack of methods identifying PTGs and assessing their viability. Damage to PTGs can cause hypocalcemia, a deficiency of calcium in the body. This complication can lead to detrimental consequences with economic burden. The surgeon’s current method of viability assessment is qualitative and subjective. Our technical solution is to employ an optical technique called speckle contrast optical spectroscopy (SCOS) that noninvasively quantifies the blood flow index (Db) of biological tissues at deep tissue levels (>1cm). The goal of this project is to verify SCOS at small source-detector-separation …


A Preliminary Comparative Study Of Molecular Visualization Software For Education, Ruoming Shen Apr 2022

A Preliminary Comparative Study Of Molecular Visualization Software For Education, Ruoming Shen

Modeling, Simulation and Visualization Student Capstone Conference

Chemistry and biology are sciences vital for understanding metabolic processes, developing disease treatments, and improving environmental conditions. With extensive knowledge of biochemistry, we can take advantage of a material’s unique chemical composition and properties in various applications. Visualization software is essential for analyzing complex chemical and biological structures and predicting their interactions with each other. This paper presents a preliminary study of three open source molecular visualization software tools - Visual Molecular Dynamics (VMD), Jmol, and Mol*, and evaluates their strengths and deficiencies. This paper utilizes the March Molecule of the Month, Vascular Endothelial Growth Factor (VEGF), from the Protein …


Web Application – Utilizing A Pose Estimation And Augmented Reality Api For Hand Telerehabilitation, Herbert Shin Aug 2021

Web Application – Utilizing A Pose Estimation And Augmented Reality Api For Hand Telerehabilitation, Herbert Shin

Undergraduate Student Research Internships Conference

No abstract provided.


Design, Simulation And Testing Of Biomimetic Directional Acoustic Sensors, Brendan Francis Apr 2021

Design, Simulation And Testing Of Biomimetic Directional Acoustic Sensors, Brendan Francis

Thinking Matters Symposium

The Ormia ochracea, a species of parasitic fly, has become the focal point in sound localization research because of its finely tuned hearing abilities. The female of this species uses its super highly directional hearing to pinpoint the call of a host cricket, with hypersensitivity of frequency and phase difference, to reach and dispose of its eggs on the host. The goal of this study was to further the research of a previous Project in Professor Guvench’s group which implemented MEMS (Micro Electro-Mechanical System) technology on a chip to replicate these abilities. In this iteration, however, some commercially available …


Nitinol Robotic Arm, Brandon Cousino, Connor Sweatt Apr 2021

Nitinol Robotic Arm, Brandon Cousino, Connor Sweatt

Thinking Matters Symposium

The goal of our project is to create a remotely controlled robotic arm using a nickel-titanium alloy (Nitinol) that exhibits “shape memory” tendencies and a 9-lumen tube. The arm must be able to move in all for directions (forward, left, right, backwards) with the control of a joystick and return to an upright position upon halting user input (thus requiring a two-way shape memory ability). The final product must operate without any unwanted twisting of the arm, crosstalk between the different nitinol wires due to heating, and be easily manufacturable. Easy replacement of the arm from the main mechanism is …


Mems Directional Acoustic Sensors, Colby Damren Apr 2021

Mems Directional Acoustic Sensors, Colby Damren

Thinking Matters Symposium

The purpose of my project is to test and verify two Micro-Electro-Mechanical-System (MEMS) microphones. The two MEMS devices are biomimetic microphones that imitate the eardrums of the Ormia Ochracea, a parasitic fly that listens for host crickets to lay their eggs. The MEMS microphones mimic the eardrum spacing of the Ormia Ochracea with a spacing of 1000um. This is roughly twice the opening of the Ormia Ochracea. The microphones will be tested for directionality inside a wooden box. This box will be lined with beveled foam to prevent any echo or outside noise from interfering with the results. These results …


A Note From The Editor, Daphne Fauber Nov 2020

A Note From The Editor, Daphne Fauber

Ideas: Exhibit Catalog for the Honors College Visiting Scholars Series

This piece is a letter from Daphne Fauber, the editor of this issue of Ideas. In the letter, the editor introduces the work of Dr. Paschalis Gkoupidenis as well as the moment in time in which his Visiting Scholars talk occurs.


Co-Existence Of Microbial Ecology In A Chemostat Using A Robust Feedback, Hector Puebla, Mariana Rodriguez-Jara, Margarita M. Gonzalez-Brambila, Eliseo Hernandez-Martinez, Alejandra Velasco-Perez, Ennio Piceno-Diaz Oct 2017

Co-Existence Of Microbial Ecology In A Chemostat Using A Robust Feedback, Hector Puebla, Mariana Rodriguez-Jara, Margarita M. Gonzalez-Brambila, Eliseo Hernandez-Martinez, Alejandra Velasco-Perez, Ennio Piceno-Diaz

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Food Web Control And Synchronization Using A Robust Feedback, Hector Puebla, Mariana Rodriguez-Jara, Cesar S. Lopez-Monsalvo, Eliseo Hernandez-Martinez, Alejandra Velasco-Perez Oct 2017

Food Web Control And Synchronization Using A Robust Feedback, Hector Puebla, Mariana Rodriguez-Jara, Cesar S. Lopez-Monsalvo, Eliseo Hernandez-Martinez, Alejandra Velasco-Perez

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu Aug 2017

Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are useful tools to analyze brain activities given active stimulation. However, the electromagnetic noise from the MRI distorts the brain signal recording and damages the subject with excessive heat generated on the electrodes attached to the skin. MRI-compatible recording and stimulation systems previously developed at LIBI lab were capable of removing the electromagnetic noise during the imaging process. Previously, the hardware systems had required the integrative software that could control both circuits simultaneously and enable users to easily change recording and stimulation parameters. Graphical user interface (GUI) programmed with computer language informed …


3d Printed Microfluidics, Hua Gong, Clayton Ramstedt, Adam T. Woolley, Gregory P. Nordin Feb 2017

3d Printed Microfluidics, Hua Gong, Clayton Ramstedt, Adam T. Woolley, Gregory P. Nordin

Biomedical Engineering Western Regional Conference

3D printing for microfluidic (lab-on-a-chip) devices


Robust Feedback Control Based On Low Order Models With Uncertainty Estimation For A Class Of Biomedical Problems, Hector Puebla, Miguel A. Gutierrez-Limon, Eliseo Hernandez-Martinez, Alejandra Velasco-Perez Oct 2016

Robust Feedback Control Based On Low Order Models With Uncertainty Estimation For A Class Of Biomedical Problems, Hector Puebla, Miguel A. Gutierrez-Limon, Eliseo Hernandez-Martinez, Alejandra Velasco-Perez

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Ionic Basis Of Ventricular Action Potentials, Ariel L. Escobar Oct 2016

Ionic Basis Of Ventricular Action Potentials, Ariel L. Escobar

Science Seminar Series

Dr. Escobar will talk about his cutting-edge approach to understanding molecular mechanisms underlying electrical activity in the heart.


Measurement Of Hydrogen Peroxide Influx Into Cells: Preparation For Measurement Using On-Chip Microelectrode Array, Hannah R. Kriscovich, Sarah M. Libring, Siddarth V. Sridharan, James K. Nolan, Jose F. Rivera, Jenna L. Rickus, David B. Janes Aug 2016

Measurement Of Hydrogen Peroxide Influx Into Cells: Preparation For Measurement Using On-Chip Microelectrode Array, Hannah R. Kriscovich, Sarah M. Libring, Siddarth V. Sridharan, James K. Nolan, Jose F. Rivera, Jenna L. Rickus, David B. Janes

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrogen peroxide (H2O2) is commonly known as a toxic reactive oxidative species (ROS) for cells. Recent studies have found evidence that H2O2 is also an important cellular signalling molecule. Quantifying cellular influx of H2O2 will contribute to researchers’ understanding of the role H2O2 plays in healthy cells and cells involved in the progression of cancers and degenerative diseases. This work utilizes an assay kit and fluorescence techniques to evaluate cell lines and conditions to create a model biological system for measuring cellular H2O2 consumption. …


Cellular Model Of Hydrogen Peroxide Release: In Preparation For On-Chip Sensor Measurements, Sarah M. Libring, Hannah R. Kriscovich, James K. Nolan, Siddarth V. Sridharan, Jose F. Rivera, David B. Janes, Jenna L. Rickus Aug 2016

Cellular Model Of Hydrogen Peroxide Release: In Preparation For On-Chip Sensor Measurements, Sarah M. Libring, Hannah R. Kriscovich, James K. Nolan, Siddarth V. Sridharan, Jose F. Rivera, David B. Janes, Jenna L. Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrogen peroxide is traditionally associated with cellular damage; however, recent studies show that low levels of H2O2 are released by cells as part of normal intercellular communication. The mechanisms of hydrogen peroxide transport, uptake and release, and biological effects are not yet well known but have important implications for cancer, stem cells, and aging. Standard H2O2 assays cannot make spatially or temporally resolved quantitative measurements at a cellular scale. Previously we developed a microelectrode array (MEA) and calibration methods for quantifying H2O2 gradients in space and time. The sensor was validated …


Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee Aug 2016

Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a neurological disorder that typically requires a long-term implantation of a shunt system to manage its symptoms. These shunt systems are notorious for their extremely high failure rate. More than 40% of all implanted shunt systems fail within the first year of implantation. On average, 85% of all hydrocephalus patients with shunt systems undergo at least two shunt-revision surgeries within 10 years of implantation. A large portion of this high failure rate can be attributed to biofouling-related obstructions and infections. Previously, we developed flexible polyimide-based magnetic microactuators to remove obstructions formed on hydrocephalus shunts. To test the long-term …


The Effects Of Vagus Nerve Stimulation On Neuroinflammation In Epilepsy, Elizabeth A. St. Clair, Gabriel O Albors, Pedro Irazoqui Dr., Amy Brewster Aug 2015

The Effects Of Vagus Nerve Stimulation On Neuroinflammation In Epilepsy, Elizabeth A. St. Clair, Gabriel O Albors, Pedro Irazoqui Dr., Amy Brewster

The Summer Undergraduate Research Fellowship (SURF) Symposium

Epilepsy is a neurological disorder characterized by chronic, unexplainable seizures. Recurring epileptic seizures are associated with long-term structural damage and cognitive deficits, and can even lead to sudden, unexplainable death. Approximately 30% of epilepsy cases are not responsive to medication. Epileptic seizures often induce inflammation in the brain and may increase the frequency of future seizures, resulting in a detrimental cycle. Vagus nerve stimulation (VNS) is a non-pharmaceutical treatment method for epilepsy that has been shown to reduce inflammation in peripheral pathways. The role of VNS in the modulation of neuroinflammation has yet to be demonstrated experimentally. To explore this, …


Simulating Low-Frequency Sonic Pulsations To Achieve Thrombolysis, Joseph C. Muskat, Matthew C. Pharris, Charles F. Babbs Aug 2015

Simulating Low-Frequency Sonic Pulsations To Achieve Thrombolysis, Joseph C. Muskat, Matthew C. Pharris, Charles F. Babbs

The Summer Undergraduate Research Fellowship (SURF) Symposium

Cardiovascular thrombosis may result in critical ischemia to a range of anatomical regions, constituting a leading cause of death in the United States. Current invasive treatments for such arterial blockages often yield blood clot recurrence, resulting in repeated hospitalization of patients. This research aims to show how internally introduced pressure oscillations may be used to initiate thrombolysis. We present a novel computational model for determining the resonant frequency and corresponding deformation of an idealized thrombus. Sinusoidal pressure differences across the thrombus induce axial displacements of frequency dependent amplitude. The maximum peak displacement occurs at a resonant frequency of 73 Hz …


Multi-Channel Analysis For Gradient Artifact Removal From Concurrent Eeg-Fmri Studies, Miguel R. Castellanos, Zhongming Liu Aug 2014

Multi-Channel Analysis For Gradient Artifact Removal From Concurrent Eeg-Fmri Studies, Miguel R. Castellanos, Zhongming Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Concurrent electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) recordings are susceptible to large amounts of noise due to the static and dynamic magnetic fields present inside the MR scanner. EEG-fMRI studies are conducted to provide better spatial and temporal resolution for each recording, respectively, but the artifacts found in the EEG render the data impossible to interpret. Past studies have focused on signal post-processing techniques which are able to effectively remove noise upon the completion of a study, but there are no techniques able to process the data in real-time without extensive calibration. This research addresses this issue by …


Medical Applications Of Mrc, Kyle Thackston, Henry Mei, Pedro Irazoqui Aug 2014

Medical Applications Of Mrc, Kyle Thackston, Henry Mei, Pedro Irazoqui

The Summer Undergraduate Research Fellowship (SURF) Symposium

Consistent powering is a limiting reagent for many medical implants and sensors. Powering in-vivo devices in animal studies requires either transcutaneous wiring (limiting mobility and increasing the chance of infection) or an implanted battery (limited lifetime and limits size of device). Wireless power transfer (WPT) would be able to overcome these challenges and permit the use of more advanced implantable devices in a research setting. Magnetic resonance coupling (MRC), an advanced form of inductive charging, allows good transfer efficiencies over significant air gaps, but works best a specific location and frequency, limiting mobility in animal studies. Using band-pass filter theory, …


Applying Spiking Neural Network Simulation To Neuromodulatory Autonomous Robot Control, Cameron Muhammad Jan 2014

Applying Spiking Neural Network Simulation To Neuromodulatory Autonomous Robot Control, Cameron Muhammad

Phi Kappa Phi Research Symposium (2012-2016)

In this paper, simulation of the brain based on an artificial spiking neuron model is used to create a self-learning algorithm. The spiking neuron simulation is used to demonstrate a neuromodulation program in which the reward seeking properties of dopamine, the risk-adverse effects of serotonin, and the attention-focusing effects of the cholinergic and noradrenergic systems are applied to a mobile robotic platform as it moves autonomously throughout an environment. External stimuli is recorded by the program as spiking “events” that result in corresponding amounts of dopamine and serotonin influenced spiking patterns. These spiking patterns affect how the robot adapts to …


A Quantitative Analysis Of A Paper-Based, Laser-Defined, Oxygen-Generating Platform For Chronic Wounds, Tiffany L. Huang, Babak Ziaie Oct 2013

A Quantitative Analysis Of A Paper-Based, Laser-Defined, Oxygen-Generating Platform For Chronic Wounds, Tiffany L. Huang, Babak Ziaie

The Summer Undergraduate Research Fellowship (SURF) Symposium

Chronic wounds affect 6.5 million patients a year while consuming US$25 billion in health care costs (Sen 2009 Wound Repair Regen.). Despite advances in wound management therapies, modern treatment for chronic wounds still requires continual professional attention and expensive equipment, posing serious practical and financial burdens for the regular patient. To provide an alternative solution, we are developing a low-cost smart bandage platform that integrates actuators and sensors to monitor and treat chronic wounds. One component of the integrated platform is an oxygen-generating module. It is a polydimethylsiloxane (PDMS) based microfluidic device fabricated on a parchment paper substrate that …


Real-Time Face Detection And Recognition, Parker Hill, Brendan Morris Apr 2012

Real-Time Face Detection And Recognition, Parker Hill, Brendan Morris

College of Engineering: Graduate Celebration Programs

The face has become a popular biometric for identification due to the wide range of features and difficulty in manipulation of the metric. In order to work towards a robust facial recognition system, this work contains a foundation for using the face as a recognition metric. First, faces are detected from still images using a Viola-Jones object detection algorithm. Then, Eigenfaces is applied to the detected faces. The system was tested on face databases as well as real-time feed from a web camera.