Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,216 Full-Text Articles 1,926 Authors 539,681 Downloads 128 Institutions

All Articles in Robotics

Faceted Search

1,216 full-text articles. Page 38 of 55.

Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni 2015 University of Tennessee - Knoxville

Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni

Doctoral Dissertations

Balance is among the most challenging tasks for patients with movement disorders. Study and treatment of these disorders could greatly benefit from combined software tools that offer better insights into neuromuscular biomechanics, and predictive capabilities for optimal surgical and rehabilitation treatment planning. A platform was created to combine musculoskeletal modeling, closed-loop forward dynamic simulation, optimization techniques, and neuromuscular control system design. Spinal (stretch-reflex) and supraspinal (operational space task-based) controllers were developed to test simulation-based hypotheses related to balance recovery and movement control. A corrective procedure (rectus femoris transfer surgery) was targeted for children experiencing stiff-knee gait and how this procedure …


Object Tracking Through The Use Of Color Hue Image Processing, Zachary R. Sabey 2015 University of Arkansas, Fayetteville

Object Tracking Through The Use Of Color Hue Image Processing, Zachary R. Sabey

Electrical Engineering Undergraduate Honors Theses

Many industrial and commercial applications today are beginning to use autonomous systems to increase productivity and cut costs in production and manpower. Most of these applications are only semi autonomous; they still need assistance from a human to either start up or receive continual instructions. With the improvement of image processing techniques, camera processing capabilities and more efficient vehicles, a new wave of fully autonomous vehicles can be implemented. A simple system that uses a dedicated image processor connected to an RC vehicle can be developed to provide an example for the new techniques currently available. The Pixycam, a dedicated …


Formal Specification And Refinement Of The Navigation Tasks Of Autonomous Robots, Eman Rabiah Rabiah 2015 United Arab Emirates University

Formal Specification And Refinement Of The Navigation Tasks Of Autonomous Robots, Eman Rabiah Rabiah

Theses

Autonomous robots are hybrid systems whose role in our daily life is becoming increasingly critical. They are tasked with various activities requiring reliability, safety, and correctness of their software-controlled behavior. Formal methods have been proved effective in addressing development issues associated with these software qualities. However, even though autonomous robot navigation is a primordial function, there is no research dealing with enhancing reliability of the navigation algorithms. Thus, our focus is to investigate this type of algorithms, and specifically path planning, a fundamental and critical functionality supporting autonomy. We formally address the issue of enhancing reliability of the widely-used A* …


Direction Of Slip Detection For A Biomimetic Tactile Sensor, Erik Engeberg, Morteza Vatani, Jae-Won Choi 2015 University of Akron Main Campus

Direction Of Slip Detection For A Biomimetic Tactile Sensor, Erik Engeberg, Morteza Vatani, Jae-Won Choi

Dr. Jae-Won Choi

A biomimetic tactile sensor (BTS) is developed from strips of electrically conductive carbon nanotubes (CNTs) mixed in a polymer matrix that is embedded within a flexible polyurethane shell. The mechanical compliance of the BTS is similar to the human fingertip. Experiments are performed which show that the BTS can be used to detect slip and the direction that slip occurs by examining the relative timing among force signals from adjacent strips of CNTs and the frequency content of the force signals. The BTS can also detect forces applied at distinct points on the surface of the BTS.


Effect Of Aircraft Datablock Complexity And Exposure Time On Performance Of Change Detection Task, Chen Ling, Lesheng Hua 2015 The University Of Akron

Effect Of Aircraft Datablock Complexity And Exposure Time On Performance Of Change Detection Task, Chen Ling, Lesheng Hua

Dr. Chen Ling

Air traffic controllers constantly perform tasks of monitoring traffic situation and searching for conflict between aircrafts. One requirement for these tasks is being able to detect any changes in the aircraft status presented by aircraft datablock. In this study, we investigated the effects of aircraft datablock complexity and exposure time on the change detection task performance. Two types of datablock, six field datablock (6F-DB) and nine field datablock (9F-DB), were artificially designed. Ten participants learned the change detection taskwith aircraft datablocks for four days. Our results showed that datablock complexity and exposure time in the change detection task had direct …


An Onboard Distributed Multiprocessing System For A Cubesat Spacecraft Created From Gumstix Computer-On-Module Units, Michael Wegerson, Jeremy Straub, Ronald Marsh 2015 SelectedWorks

An Onboard Distributed Multiprocessing System For A Cubesat Spacecraft Created From Gumstix Computer-On-Module Units, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative at the University of North Dakota [1] aims to make ac-cess to space for research and educational purposes easier by enabling the creation of low-cost CubeSats. It is creating the Open Prototype for Educational Nanosats (OPEN), a framework for developing a 1-U CubeSat space-craft with a parts cost of less than $5,000 [2]. The designs [3], documentation and computer code from this will be made publically available to enable the development of programs at other institutions.


The Use Of Low-Cost ‘Balloonsats’ For Stem Education With 3d Printing, Jeremy Straub, Josh Berk, John Nordlie, Ronald Marsh 2015 SelectedWorks

The Use Of Low-Cost ‘Balloonsats’ For Stem Education With 3d Printing, Jeremy Straub, Josh Berk, John Nordlie, Ronald Marsh

Jeremy Straub

A new technology, known as 3D printing, allows the rap-id fabrication of plastic structures of virtually any config-uration. These structures are light-weight, dura-ble and inexpensive. This paper considers the utility of utilizing 3D printing to create enclosures for ‘BalloonSats’ – small, low-cost spacecraft analog which can be utilized by students to understand space engi-neering, conduct near-space science (e.g., physics, bio-logical and other experiments) and touch the edge of space.


Considering Scheduling Algorithms For An Open Source Software Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh 2015 SelectedWorks

Considering Scheduling Algorithms For An Open Source Software Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Satellite Development Initiative at the University of North Dakota [1] is working make space research and education more accessible world-wide [2], through the design and public release of a complete set of plans, software and other documents (see [3]) for a 1-U CubeSat. This design targets a parts cost of no more than $5,000 [4]. These lowered costs, combined with the efficiencies of the CubeSat form fac-tor [5] and free-to-qualified-developer launch services [6, 7] should facilitate greater access to space for the ed-ucational, research and other communities.


Designing An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh 2015 SelectedWorks

Designing An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh

Jeremy Straub

CubeSat spacecraft have been shown to provide significant cost [1], research [1] and educational benefits [2]. Prior work at UND has demonstrated the efficacy of this form factor of craft for asteroid as-sessment activities [3] and onboard image processing [4]. Work is al-so ongoing to develop a low-cost framework [5] for CubeSat devel-opment to enable activities at UND and at other locations.


Update On The Progress Of The 1-U Open Cubesat Development, Jeremy Straub, Ronald Marsh 2015 SelectedWorks

Update On The Progress Of The 1-U Open Cubesat Development, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter program [1] is developing a low-cost framework for the creation of space-craft [2] by researchers and educators world-wide [3]. In line with the objective of enabling future educational use by others, educational assessment [4, 5] has been a key focus. Sever-al areas were assessed: students were asked what types of benefits they sought from their participation [6], assessment of benefit attain-ment is ongoing. Work on the development of a designs (See Figures 2 and 8) that can be used to build a spacecraft with a cost of under $5,000 [7] using primarily COTS parts and testing (see Figure …


Physical Intelligent Sensors, Pavan Bandhil, Sanjeevi Chitikeshi, Ajay Mahajan, Fernando Figueroa 2015 University of Akron, main campus

Physical Intelligent Sensors, Pavan Bandhil, Sanjeevi Chitikeshi, Ajay Mahajan, Fernando Figueroa

Dr. Ajay Mahajan

This paper proposes the development of intelligent sensors as part of an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA s Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test …


A Novel Method To Create Intelligent Sensors With Learning Capabilities, Ajay Mahajan, Fernando Figueroa 2015 University of Akron, main campus

A Novel Method To Create Intelligent Sensors With Learning Capabilities, Ajay Mahajan, Fernando Figueroa

Dr. Ajay Mahajan

A formal theory for the development of a generic model of an autonomous sensor is proposed and implemented. An autonomous sensor not only interprets the acquired data in accordance with an embedded expert system knowledge base, but is also capable of using this data to modify and enhance this knowledge base. Hence, the system is capable of learning and thereby improving its performance over time. The main objective of the model is to combine the capabilities of the physical sensor and an expert operator monitoring the sensor in real-time. The system has been successfully tested using various simulated data sets …


Hybrid Power System For Micro Air Vehicles, Bakytgul Khaday 2015 Purdue University

Hybrid Power System For Micro Air Vehicles, Bakytgul Khaday

Open Access Theses

Today Micro Air Vehicles are in need of a good power source that would enable them longer flight time and various functionalities. This work is focused on to this problem. A possible solution that is offered in this study is implementing a hybrid power system consisting of battery and supercapacitor (SCAP). The proposed hybrid power system was tested on an existing MAV platform (Cheerson CX-10). A separate hybrid power printed circuit board (PCB) was designed and manufactured. For experimental and system verification purposes, the PCB was not sized for on-board flight. The hybrid power PCB was connected to MAV through …


Linear Matrix Inequality-Based Nonlinear Adaptive Robust Control With Application To Unmanned Aircraft Systems, David William Kun 2015 Purdue University

Linear Matrix Inequality-Based Nonlinear Adaptive Robust Control With Application To Unmanned Aircraft Systems, David William Kun

Open Access Theses

Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known …


Characterization Of A Robotic Manipulator For Dynamic Wind Tunnel Applications, James C. Lancaster 2015 Air Force Institute of Technology

Characterization Of A Robotic Manipulator For Dynamic Wind Tunnel Applications, James C. Lancaster

Theses and Dissertations

The newly acquired 6-DOF Motion Test Apparatus (MTA) was installed to perform dynamic wind tunnel testing in the AFIT Low Speed Wind Tunnel. Several complex motions revealed that the overall performance of the test rig needed improvement especially during small motions. The motions exposed that further enhancements would need to be performed individually for each joint. This research effort focused on the improvement of the MTA wrist roll motor and controller using a pitch oscillation. The controller software was improved using position feedback because the MTA wrist roll motor and controller exhibited reduced signal bias and amplitude attenuation. The enhanced …


An Opportunistic Service Oriented Approach For Robot Search, Dan Xie 2015 University of Massachusetts Amherst

An Opportunistic Service Oriented Approach For Robot Search, Dan Xie

Doctoral Dissertations

Health care for the elderly poses a major challenge as the baby boomer generation ages. Part of the solution is to develop technology using sensor networks and service robotics to increase the length of time that an elder can remain at home. Since moderate immobility and memory impairment are common as people age, a major problem for the elderly is locating and retrieving frequently used "common" objects such as keys, cellphones, books, etc. However, for robots to assist people while they search for objects, they must possess the ability to interact with the human client, complex client-side environments and heterogeneous …


Learning Parameterized Skills, Bruno Castro da Silva 2015 University of Massachusetts Amherst

Learning Parameterized Skills, Bruno Castro Da Silva

Doctoral Dissertations

One of the defining characteristics of human intelligence is the ability to acquire and refine skills. Skills are behaviors for solving problems that an agent encounters often—sometimes in different contexts and situations—throughout its lifetime. Identifying important problems that recur and retaining their solutions as skills allows agents to more rapidly solve novel problems by adjusting and combining their existing skills. In this thesis we introduce a general framework for learning reusable parameterized skills. Reusable skills are parameterized procedures that—given a description of a problem to be solved—produce appropriate behaviors or policies. They can be sequentially and hierarchically combined with other …


Nanosatellite Scheduling Using A Dictionary Module And A ‘Useful Trick’ With Coded Unsigned Integers, Monilito Castro, Jeremy Straub 2015 SelectedWorks

Nanosatellite Scheduling Using A Dictionary Module And A ‘Useful Trick’ With Coded Unsigned Integers, Monilito Castro, Jeremy Straub

Jeremy Straub

Schedulers for small spacecraft must satisfy the dual requirement of generating very efficient schedules while concurrently minimizing the resources required to create the schedule. This paper proposes a technique for searching for tasks that can be utilized to fill particular schedule locations. This approach is based on a modular system for storing important variables. This modular system has three important variables: t0, x0 and y0. The variable y is latitude and x is longitude. Time variable t is an integer and each unit represents a time quantum. They are related to each other by three functions Ft, Fx, and Fy. …


Swarm Intelligence, A Blackboard Architecture And Local Decision Making For Spacecraft Command, Jeremy Straub 2015 SelectedWorks

Swarm Intelligence, A Blackboard Architecture And Local Decision Making For Spacecraft Command, Jeremy Straub

Jeremy Straub

Control of a multi-spacecraft constellation is a topic of significant inquiry, at present. This paper presents and evaluates a command architecture for a multi-spacecraft mission. It combines swarm techniques with a decentralized / local decision making architecture (which uses a set of shared blackboards for coordination) and demonstrates the efficacy of this approach. Under this approach, the Blackboard software architecture is used to facilitate data sharing between craft as part of a resilient hierarchy and the swarm techniques are used to coordinate activity. The paper begins with an overview of prior work on the precursor command technologies and then presents …


Driving In Traffic: Short-Range Sensing For Urban Collision Avoidance, Chuck Thorpe, David Duggins, Jay Gowdy, Rob MacLaughlin, Christoph Mertz, Mel Siegel, Arne Suppe, Bob Wang, Teruko Yata 2015 Carnegie Mellon University

Driving In Traffic: Short-Range Sensing For Urban Collision Avoidance, Chuck Thorpe, David Duggins, Jay Gowdy, Rob Maclaughlin, Christoph Mertz, Mel Siegel, Arne Suppe, Bob Wang, Teruko Yata

Mel Siegel

Intelligent vehicles are beginning to appear on the market, but so far their sensing and warning functions only work on the open road. Functions such as runoff-road warning or adaptive cruise control are designed for the uncluttered environments of open highways. We are working on the much more difficult problem of sensing and driver interfaces for driving in urban areas. We need to sense cars and pedestrians and curbs and fire plugs and bicycles and lamp posts; we need to predict the paths of our own vehicle and of other moving objects; and we need to decide when to issue …


Digital Commons powered by bepress