Open Access. Powered by Scholars. Published by Universities.®

The Sun and the Solar System Commons

Open Access. Powered by Scholars. Published by Universities.®

353 Full-Text Articles 740 Authors 95,727 Downloads 84 Institutions

All Articles in The Sun and the Solar System

Faceted Search

353 full-text articles. Page 1 of 15.

Investigation Of Tertiary Impact Cratering And Relation To Impact Physics Theory, Mikayla Huffman 2022 William & Mary

Investigation Of Tertiary Impact Cratering And Relation To Impact Physics Theory, Mikayla Huffman

Undergraduate Honors Theses

Extraterrestrial impact crater formation is important in many subfields of planetary science, including geochronology, planetary formation, and dynamic fragmentation theory. Current dynamic fragmentation theory lacks scale dependence and relies heavily on terrestrial data. Exploring a range of impact and ejecta velocities as is produced by cratering events on the Moon may bridge the gap between heavily terrestrial-based theory and planetary data. The secondary craters of secondary craters deemed “tertiary craters,” have been theorized, but planetary images have not been of sufficient resolution to effectively search for them until recently. Tertiary craters are formed by relatively low-velocity fragments ejected by nearby ...


Determining The Sources Of The Zodiacal Cloud Using Relative Velocities Of Dust Particles From High-Resolution Spectroscopy, Philip B. Mann III 2022 Embry-Riddle Aeronautical University

Determining The Sources Of The Zodiacal Cloud Using Relative Velocities Of Dust Particles From High-Resolution Spectroscopy, Philip B. Mann Iii

Beyond: Undergraduate Research Journal

The zodiacal cloud is the Solar System debris disk in which the Earth’s orbit is located. The dust that comprises the cloud comes from cometary, asteroidal, interstellar, and other source populations, but the relative ratios have proven hard to determine. However, asteroidal and cometary particles typically have different types of orbits, with asteroidal particles having more circular and lower inclination orbits than cometary particles. Accordingly, the relative velocities of these groups of particles with respect to Earth are also different, and measurements of these relative velocities can help distinguish between the sources. The spectrum of the zodiacal light contains ...


Mms Observations Of The Kelvin-Helmholtz Instability And Associated Ion Scale Waves, Rachel C. Rice 2022 Embry-Riddle Aeronautical University

Mms Observations Of The Kelvin-Helmholtz Instability And Associated Ion Scale Waves, Rachel C. Rice

PhD Dissertations and Master's Theses

The detailed mechanisms coupling the solar wind to Earth's magnetosphere are not yet fully understood. Solar wind plasma is heated non-adiabatically as it penetrates the magnetosphere, and this process must span scale sizes. Reconnection alone is not able to account for the observed heating; other mechanisms must be at work. One potential process is the Kelvin-Helmholtz instability (KHI). The KHI is a convective instability which operates at the fluid scale in plasmas, but is capable of driving secondary process at smaller scales. Previous work has shown evidence of magnetic reconnection, various ion scale wave modes, mode conversion, and turbulence ...


Venus Mountain Waves In The Upper Atmosphere Simulated By A Time-Invariant Linear Full-Wave Spectral Model, Michael P. HIckey, Richard L. Walterscheid, Thomas Navarro, Gerald Schubert 2022 Embry-Riddle Aeronautical University

Venus Mountain Waves In The Upper Atmosphere Simulated By A Time-Invariant Linear Full-Wave Spectral Model, Michael P. Hickey, Richard L. Walterscheid, Thomas Navarro, Gerald Schubert

Publications

A 2-D spectral full-wave model is described that simulates the generation and propagation of mountain waves over idealized topography in Venus' atmosphere. Modeled temperature perturbations are compared with the Akatsuki observations. Lower atmosphere eddy diffusivity and stability play a major role in the upward propagation of gravity waves from their mountain sources. Two local times (LT) are considered. For LT = 11 h the waves are blocked by a critical level near 100 km altitude, while for LT = 16 h the waves propagate into the thermosphere. As a result of the small scale height in the Venus thermosphere, for LT = 16 ...


Studying The Conditions For Magnetic Reconnection In Solar Flares With And Without Precursor Flares, Seth H. Garland, Daniel J. Emmons, Robert D. Loper 2022 Air Force Institute of Technology

Studying The Conditions For Magnetic Reconnection In Solar Flares With And Without Precursor Flares, Seth H. Garland, Daniel J. Emmons, Robert D. Loper

Faculty Publications

Forecasting of solar flares remains a challenge due to the limited understanding of the triggering mechanisms associated with magnetic reconnection, the primary physical phenomenon connected to these events. Studies have indicated that changes to the photospheric magnetic fields associated with magnetic reconnection – particularly in relation to the field helicity – occur during solar flare events. This study utilized data from the Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) and SpaceWeather HMI Active Region Patches (SHARPs) to analyze full vector-field component data of the photospheric magnetic field during solar flare events within a near decade long HMI dataset. Analysis of ...


Development Of A Fluxgate Magnetometer Model, Eleonora Olsmats 2022 University of New Hampshire, Durham

Development Of A Fluxgate Magnetometer Model, Eleonora Olsmats

Honors Theses and Capstones

As a part of the UNH SWFO-L1 mission to monitor space weather and the sun’s behavior, the fluxgate magnetometer is an important component to measure external magnetic fields. The basic principle of a fluxgate magnetometer is to detect changes in the ambient magnetic field by inducing a magnetic field in a ferromagnetic material via a drive winding. Each magnetometer is unique due to the ferromagnetic properties of the core material which can be seen in the hysteresis loop which is a relationship between the magnetic field strength (H) and the induced magnetic field (B). Measuring the hysteresis of a ...


Characterizing The Particle Size Distribution In Saturn's Rings Using Cassini Uvis Stellar Occultation Data, Stephanie Eckert 2022 University of Central Florida

Characterizing The Particle Size Distribution In Saturn's Rings Using Cassini Uvis Stellar Occultation Data, Stephanie Eckert

Electronic Theses and Dissertations, 2020-

NASA's Cassini mission to Saturn revolutionized modern understanding of the planet's vast and intricate ring system. We use stellar occultation data from Cassini's UVIS High Speed Photometer (HSP) to characterize the particle size distribution in the rings with two methods. First, we discern the sizes of the smallest particles at ring edges by forward-modeling observed diffraction signatures which appear as spikes in the signal, the shape and amplitude of which depends on the size and abundance of the smallest particles. We then probe the upper end of the size distribution using occultation statistics. Although the distribution of ...


Surface Morphologies In A Mars-Analog Ca-Sulfate Salar, High Andes, Northern Chile, Nancy W. Hinman, Michael H. Hofmann, Kimberly Warren-Rhodes, Michael S. Phillips, Nora Noffke, Nathalie A. Cabrol, Guillermo Chong Diaz, Cecilia Demergasso, Cinthya Tebes-Cayo, Oscar Cabestro, Janice L. Bishop, Virginia C. Gulick, David Summers, Pablo Sobron, Michael McInenly, Jeffrey Moersch, Constanza Rodriguez, Philippe Sarazzin, Kevin L. Rhodes, Camila Javiera Riffo Contreras, David Wettergreen, Victor Parro, On behalf of the SETI NAI team 2022 Old Dominion University

Surface Morphologies In A Mars-Analog Ca-Sulfate Salar, High Andes, Northern Chile, Nancy W. Hinman, Michael H. Hofmann, Kimberly Warren-Rhodes, Michael S. Phillips, Nora Noffke, Nathalie A. Cabrol, Guillermo Chong Diaz, Cecilia Demergasso, Cinthya Tebes-Cayo, Oscar Cabestro, Janice L. Bishop, Virginia C. Gulick, David Summers, Pablo Sobron, Michael Mcinenly, Jeffrey Moersch, Constanza Rodriguez, Philippe Sarazzin, Kevin L. Rhodes, Camila Javiera Riffo Contreras, David Wettergreen, Victor Parro, On Behalf Of The Seti Nai Team

OES Faculty Publications

Salar de Pajonales, a Ca-sulfate salt flat in the Chilean High Andes, showcases the type of polyextreme environment recognized as one of the best terrestrial analogs for early Mars because of its aridity, high solar irradiance, salinity, and oxidation. The surface of the salar represents a natural climate-transition experiment where contemporary lagoons transition into infrequently inundated areas, salt crusts, and lastly dry exposed paleoterraces. These surface features represent different evolutionary stages in the transition from previously wetter climatic conditions to much drier conditions today. These same stages closely mirror the climate transition on Mars from a wetter early Noachian to ...


Newgrange Skyscape In Stellarium, Frank Prendergast 2021 Technological University Dublin

Newgrange Skyscape In Stellarium, Frank Prendergast

Articles

Newgrange Skyscape in Stellarium is a new customised landscape planetarium model giving the user the unique ability to interrogate the dynamic sky above the Boyne Valley on any date of interest during the hours of daylight or darkness. Archaeological, astronomical and topographical points of interest are labelled in the model and visible even during the hours of darkness. These are summarily described in a short gazetteer appended at the end of the instruction document to encourage further exploration of the wonderful heritage found in the Boyne Valley and beyond.

Watch on Youtube: https://www.youtube.com/watch?app=desktop&v ...


Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin 2021 University of Nevada, Las Vegas

Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin

Physics & Astronomy Faculty Publications

The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar ...


Gw Ori: Circumtriple Rings And Planets, Jeremy L. Smallwood, Rebecca Nealon, Cheng Chen, Rebecca G. Martin, Jiaqing Bi, Ruobing Dong, Christophe Pinte 2021 University of Nevada, Las Vegas

Gw Ori: Circumtriple Rings And Planets, Jeremy L. Smallwood, Rebecca Nealon, Cheng Chen, Rebecca G. Martin, Jiaqing Bi, Ruobing Dong, Christophe Pinte

Physics & Astronomy Faculty Publications

GW Ori is a hierarchical triple star system with a misaligned circumtriple protoplanetary disc. Recent Atacama Large Millimeter/submillimeter Array observations have identified three dust rings with a prominent gap at 100 au and misalignments between each of the rings. A break in the gas disc may be driven by the torque from either the triple star system or a planet that is massive enough to carve a gap in the disc. Once the disc is broken, the rings nodally precess on different time-scales and become misaligned. We investigate the origins of the dust rings by means of N-body integrations ...


Terrestrial Planet Formation In A Circumbinary Disc Around A Coplanar Binary, Anna C. Childs, Rebecca G. Martin 2021 University of Nevada, Las Vegas

Terrestrial Planet Formation In A Circumbinary Disc Around A Coplanar Binary, Anna C. Childs, Rebecca G. Martin

Physics & Astronomy Faculty Publications

With N-body simulations, we model terrestrial circumbinary planet (CBP) formation with an initial surface density profile motivated by hydrodynamic circumbinary gas disc simulations. The binary plays an important role in shaping the initial distribution of bodies. After the gas disc has dissipated, the torque from the binary speeds up the planet formation process by promoting body-body interactions but also drives the ejection of planet building material from the system at an early time. Fewer but more massive planets form around a close binary compared to a single star system. A sufficiently wide or eccentric binary can prohibit terrestrial planet formation ...


Developing A Bytownite Calibration Curve As A Lunar Analogue, Trevor W. Matterson 2021 Western University

Developing A Bytownite Calibration Curve As A Lunar Analogue, Trevor W. Matterson

Undergraduate Student Research Internships Conference

Planetary analogue materials are useful to help interpret and predict planetary processes on other planetary bodies that we cannot observe directly. Lunar analogue materials include terrestrial rocks and minerals with compositions and textures like those on the moon. This project investigates the lunar analogue mineral bytownite to quantify shock effects on the moon using strain related mosaicity determined through micro x-ray diffraction (µXRD). Calibrating strain information as a function of shock pressure for these minerals will enable us to extract peak shock pressures (in GPa) from naturally shocked materials, such as lunar meteorites and Apollo samples, using µXRD


The Effects Of Water Ice Sublimation On Slope Failures Of Icy Regolith, Christopher Cox, Madison Weinberg, Trisha Joseph 2021 University of Central Florida, Orlando

The Effects Of Water Ice Sublimation On Slope Failures Of Icy Regolith, Christopher Cox, Madison Weinberg, Trisha Joseph

The Pegasus Review: UCF Undergraduate Research Journal

The frost line in a planetary system represents the distance from the central star inside of which conditions are too warm for ice to form, while beyond this line it will be stable. When an icy object passes that line heading toward the Sun it will begin to sublimate and outgas, potentially causing mass loss and surface changes. One example is surface failures, which can lead to material being removed from the object. Evidence of this has been seen on cometary surfaces, where surfaces often show structures that appear to have suffered various mechanical failures like cracking and landslides. By ...


Analysis Of The Primary Volatile Compositions In The Oort Cloud And Jupiter-Family Comets Towards The Goal Of Understanding Their Origin And Diversity, Mohammad Saki 2021 University of Missouri-St. Louis

Analysis Of The Primary Volatile Compositions In The Oort Cloud And Jupiter-Family Comets Towards The Goal Of Understanding Their Origin And Diversity, Mohammad Saki

Dissertations

Knowledge of the initial conditions present in the early solar nebula is required to understand the evolution and its current volatile content. Comets were some of the first objects to accrete in the solar nebula. They are among the most pristine (primitive) remnants of the solar system formation, and their present-day volatile composition likely reflects the composition and conditions where (and when) they formed. Therefore, they are fossils of the solar system formation. High-resolution near-infrared spectroscopy is a valuable tool for sampling the parent volatile (i.e., ices subliming directly from the nucleus) composition of comets via analysis of fluorescence ...


A Consistent Model Of Terrestrial Planet Magnetospheres And Rotations In Our Solar System, Fred J. Cadieu 2021 CUNY Queens College

A Consistent Model Of Terrestrial Planet Magnetospheres And Rotations In Our Solar System, Fred J. Cadieu

Publications and Research

The Sun comprises 99.9% of the solar system mass so it is expected that Sun terrestrial planet interactions can influence the motion as well as the rotation of the terrestrial planets.Gravity affects the planet orbital motions while the changing magnetic fields of the Sun can influence the planet rotations. Planets that manifest a magnetic field dominate any weaker magnetic fields from the Sun, but the rotation of terrestrial planets without a magnetic field interacts with the changing Sun’s field dependent on the electrical conductivity of the core region. It is determined that the average planet density becomes ...


Late Amazonian Wind Regimes And Landscape Evolution In Northern Meridiani Planum, Mars, Thomas Stritch 2021 Augustana College

Late Amazonian Wind Regimes And Landscape Evolution In Northern Meridiani Planum, Mars, Thomas Stritch

Geology: Student Scholarship & Creative Works

Aeolian process have dominated the lower latitudes of Mars for billions of years. Aeolian landforms can act as records of current and past climates and landscape evolution processes. The etched deposits of Meridiani Planum, a vast suite of layered bedrock extending from southwest Arabia Terra to Schiaparelli crater, have long been noted to have been eroded by aeolian processes. However, little detailed work on the aeolian landforms of Meridiani Planum beyond the Opportunity rover landing site has been done. In this study, I examine wind streaks, aeolian bedforms (including dunes and large ripples), and yardangs in a valley about 370 ...


Aztlán Del Sol, Marcus Zúñiga 2021 Art Center College of Design

Aztlán Del Sol, Marcus Zúñiga

Chamisa: A Journal of Literary, Performance, and Visual Arts of the Greater Southwest

An artistic writing developed from the themes and concepts of an of art installation made by a visual artist of Mexican-American descent from New Mexico. The work references the relationship of Aztec mythology to the American Southwest, art theoretical discourse in object oriented ontology and aesthetics, and key ideas in astronomy. Additionally interwoven is an expanded sense for interpreting ancestry and history under the constructs of multicultural conceptions of time, specifically cultures with notable spiritual rituals of Sun worship and observation.


Discovering Kepler’S Third Law From Planetary Data, Boyan Kostadinov, Satyanand Singh 2021 CUNY New York City College of Technology

Discovering Kepler’S Third Law From Planetary Data, Boyan Kostadinov, Satyanand Singh

Publications and Research

In this data-inspired project, we illustrate how Kepler’s Third Law of Planetary Motion can be discovered from fitting a power model to real planetary data obtained from NASA, using regression modeling. The power model can be linearized, thus we can use linear regression to fit the model parameters to the data, but we also show how a non-linear regression can be implemented, using the R programming language. Our work also illustrates how the linear least squares used for fitting the power model can be implemented in Desmos, which could serve as the computational foundation for this project at a ...


Expanding Band Parameter Analysis Methods For Hed Meteorites And V-Type Asteroids, Noah Adm Haverkamp Frere 2021 University of Tennessee, Knoxville

Expanding Band Parameter Analysis Methods For Hed Meteorites And V-Type Asteroids, Noah Adm Haverkamp Frere

Masters Theses

Vesta and Vesta-like asteroids have been convincingly linked, through visible and near-infrared (VNIR; 0.7 - 2.5 µm [micron]) spectral analysis, to a clan of basaltic achondritic meteorites – howardites, eucrites, and diogenites (HEDs). VNIR reflectance spectra of V-type asteroids and HED meteorites have two absorption features centered near 1 µm (Band I) and 2 µm (Band II) caused primarily by Fe2+ [iron] and Ca2+ [calcium] cations in pyroxene. Previous studies have shown a correlation between the mol% Fs and Wo with the central wavelengths of Band I and Band II, hereafter called Band I Center (BIC) and Band ...


Digital Commons powered by bepress