Open Access. Powered by Scholars. Published by Universities.®

Stars, Interstellar Medium and the Galaxy Commons

Open Access. Powered by Scholars. Published by Universities.®

1,469 Full-Text Articles 3,330 Authors 120,892 Downloads 86 Institutions

All Articles in Stars, Interstellar Medium and the Galaxy

Faceted Search

1,469 full-text articles. Page 1 of 46.

Bayesian Inference For The White Dwarf Initial-Final Mass Relation, Nathan Stein, Ted von Hippel, David van Dyk, Steven DeGennaro, Elizabeth Jeffery, Bill Jefferys 2023 Harvard University

Bayesian Inference For The White Dwarf Initial-Final Mass Relation, Nathan Stein, Ted Von Hippel, David Van Dyk, Steven Degennaro, Elizabeth Jeffery, Bill Jefferys

Publications

Stars lose mass as they age, and understanding mass loss is important for understanding stellar evolution. The initial-final mass relation (IFMR) is the relationship between a white dwarf’s initial mass on the main sequence and its final mass. We have developed a new method for fitting the IFMR based on a Bayesian analysis of photometric observations, combining deterministic models of stellar evolution in an internally coherent way. No mass data are used. Our method yields precise inferences (with uncertainties) for a parameterized linear IFMR. Our method can also return posterior distributions of white dwarf initial and final masses.


Exploring The Mass To Light Ratio Of Massive Galaxies With The Rubin Dp0 Preview Dataset, Denvir Joy Higgins 2023 California Polytechnic State University, San Luis Obispo

Exploring The Mass To Light Ratio Of Massive Galaxies With The Rubin Dp0 Preview Dataset, Denvir Joy Higgins

Physics

The Vera C. Rubin Observatory will perform the 10-year long Legacy Survey of Space and Time expected to begin in 2024. LSST will cover the Southern Hemisphere, collecting over two million images with an 8.4-meter telescope and 3200-pixel camera. In collaboration with the scientific community and based on the Outer Rim Simulation \citep{heit19}, the Rubin Observatory released a simulated dataset (DP0) of the data that is expected to be in hand at the 5-year mark. Using this simulated dataset, I have explored the number and luminosity of the most massive local galaxies. Using a sample of the brightest, closest galaxies …


Identifying And Analyzing Multi-Star Systems Among Tess Planetary Candidates Using Gaia, Katie E. Bailey 2023 Stephen F Austin State University

Identifying And Analyzing Multi-Star Systems Among Tess Planetary Candidates Using Gaia, Katie E. Bailey

Electronic Theses and Dissertations

Exoplanets represent a young, rapidly advancing subfield of astrophysics where much is still unknown. It is therefore important to analyze trends among their parameters to learn more about these systems. More complexity is added to these systems with the presence of additional stellar companions. To study these complex systems, one can employ programming languages such as Python to parse databases such as those constructed by TESS and Gaia to bridge the gap between exoplanets and stellar companions. Data can then be analyzed for trends in these multi-star exoplanet systems and in juxtaposition to their single-star counterparts. This research was able …


Constraining 𝐻0 Via Extragalactic Parallax, Nicholas Ferree 2023 University of Richmond

Constraining 𝐻0 Via Extragalactic Parallax, Nicholas Ferree

Honors Theses

We examine the prospects for measurement of the Hubble parameter 𝐻0 via observation of the secular parallax of other galaxies due to our own motion relative to the cosmic microwave background rest frame. Peculiar velocities make distance measurements to individual galaxies highly uncertain, but a survey sampling many galaxies can still yield a precise 𝐻0 measurement. We use both a Fisher information formalism and simulations to forecast errors in 𝐻0 from such surveys, marginalizing over the unknown peculiar velocities. The optimum survey observes ∼ 102 galaxies within a redshift 𝑧max = 0.06. The required errors on proper motion are comparable …


The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi 2023 Western University

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


The Coeval Mass Assembly Of The Universe Via Supermassive Black Hole Accretion And Star Formation In Galaxies, Alyssa Sokol 2023 University of Massachusetts Amherst

The Coeval Mass Assembly Of The Universe Via Supermassive Black Hole Accretion And Star Formation In Galaxies, Alyssa Sokol

Doctoral Dissertations

The possible co-evolution between galaxies and their central supermassive black holes is supported by the similarity in shape between the Star Formation Rate Density (SFRD) and Black Hole Accretion Rate Density (BHARD) out to z$\sim$ 3. This apparent connection between BH growth and star formation is only established globally; while both trends peak at z$\sim$ 2, the amount of stellar and black hole mass assembly occurring within the same galaxies is unknown. Computing these trends for the same galaxies will mitigate the present sample mismatch and can be accomplished with an IR-selected sample; however, the approach relies on a robust …


Stellar Binaries And Post-Merger Evolution: A Framework For Stellar Evolution And Nucleosynthesis In R Coronae Borealis Stars, Bradley Munson 2023 Louisiana State University and Agricultural and Mechanical College

Stellar Binaries And Post-Merger Evolution: A Framework For Stellar Evolution And Nucleosynthesis In R Coronae Borealis Stars, Bradley Munson

LSU Doctoral Dissertations

We have developed a framework for simulating binary stars through all three relevant
timescales: the dynamical merger, thermal, and nuclear evolution. The framework begins by simulating a dynamical merger in a 3-dimensional hydrodynamics adaptive mesh refinement code, Octo-Tiger, and performing a spherical averaging calculation to map the post-merger remnant into the 1-dimensional stellar evolution code, MESA. In this work, we primarily utilize this framework for simulating double white dwarf mergers, which are believed to be the progenitor to R Coronae Borealis (RCB) stars. We evolve the post-merger in MESA and compare the computed surface abundances to those observed …


Stellar Atmosphere Models For Select Veritas Stellar Intensity Interferometry Targets, Jackson Ladd Sackrider, Jason P. Aufdenberg, Katelyn Sonnen 2023 Embry-Riddle Aeronautical University

Stellar Atmosphere Models For Select Veritas Stellar Intensity Interferometry Targets, Jackson Ladd Sackrider, Jason P. Aufdenberg, Katelyn Sonnen

Beyond: Undergraduate Research Journal

Since 2020 the Very Energetic Radiation Imaging Telescope Array System (VERITAS) has observed 48 stellar targets using the technique of Stellar Intensity Interferometry (SII). Angular diameter measurements by VERITAS SII (VSII) in a waveband near 400 nm complement existing angular diameter measurements in the near-infrared. VSII observations will test fundamental predictions of stellar atmosphere models and should be more sensitive to limb darkening and gravity darkening effects than measurements in the near-IR, however, the magnitude of this difference has not been systematically explored in the literature. In order to investigate the synthetic interferometric (as well as spectroscopic) appearance of stars …


Nearby Galaxies: Modelling Star Formation Histories And Contamination By Unresolved Background Galaxies, Hadi Papei 2023 The University of Western Ontario

Nearby Galaxies: Modelling Star Formation Histories And Contamination By Unresolved Background Galaxies, Hadi Papei

Electronic Thesis and Dissertation Repository

Galaxies are complex systems of stars, gas, dust, and dark matter which evolve over billions of years, and one of the main goals of astrophysics is to understand how these complex systems form and change. Measuring the star formation history of nearby galaxies, in which thousands of stars can be resolved individually, has provided us with a clear picture of their evolutionary history and the evolution of galaxies in general.

In this work, we have developed the first public Python package, SFHPy, to measure star formation histories of nearby galaxies using their colour-magnitude diagrams. In this algorithm, an observed colour-magnitude …


Astr 1: General Astronomy, David Goldberg 2023 CUNY Queens College

Astr 1: General Astronomy, David Goldberg

Open Educational Resources

No abstract provided.


Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie LaVoie-Ingram 2023 University of North Florida

Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie Lavoie-Ingram

UNF Graduate Theses and Dissertations

Using ancient minerals as paleo-detectors is a proposed experimental technique expected to transform supernova neutrino and dark matter detection. In this technique, minerals are processed and closely analyzed for nanometer scale damage track remnants from nuclear recoils caused by supernova neutrinos and possibly dark matter. These damage tracks present the opportunity to directly detect and characterize the core-collapse supernova rate of the Milky Way Galaxy as well as the presence of dark matter. Current literature presents theoretical estimates for these potential tracks, however, there is little research investigating the experimental feasibility of this technique. At the University of North Florida, …


Impact On Infinite Asteroids: Analysis Of Ejecta Outcomes In Small Body Binary Systems, Jennifer Larson 2023 University of Central Florida

Impact On Infinite Asteroids: Analysis Of Ejecta Outcomes In Small Body Binary Systems, Jennifer Larson

Electronic Theses and Dissertations, 2020-

Binary asteroid systems make up roughly 15% of objects occupying near-Earth space, the Main Belt, and trans-Neptunian space. The impact history of asteroids in binary systems represents an interesting aspect of the general problem pertaining to the nature and evolution of surfaces for such objects. Specifically, the post-impact dynamics of ejecta and its relation to surface modification is a challenging question owing, in part, to the unusual gravitational field in a binary system and the subsequent capture and emplacement of debris on either binary component. Observable differences or similarities between the two bodies in the color, reflectance, thermal properties, and …


Development Of Regolith Simulants Of Lunar Permanently Shadowed Regions And Jupiter Trojan Asteroids, Karlis Slumba 2023 University of Central Florida

Development Of Regolith Simulants Of Lunar Permanently Shadowed Regions And Jupiter Trojan Asteroids, Karlis Slumba

Electronic Theses and Dissertations, 2020-

Every scientific experiment or innovation goes through a phase of testing equipment. This is not only true for experiments in the laboratory, but also very relevant for experiments on other planetary bodies. In order to test tools and robotic equipment that are destined for another planet, moon, asteroid or comet, it is necessary to simulate the regolith environment on that surface. In this thesis we have provided an overview of two methods for regolith simulant development. In one approach we made simulants in different compositions to find the best spectral fit to Jupiter Trojan asteroids. At visible to near-infrared (VNIR) …


Two Substellar Survivor Candidates; One Found And One Missing, T. von Hippel, N. Walters, J. Farihi, T.R. Marsh, E. Breedt, P.W. Cauley, J.J. Hermes 2022 Embry-Riddle Aeronautical University

Two Substellar Survivor Candidates; One Found And One Missing, T. Von Hippel, N. Walters, J. Farihi, T.R. Marsh, E. Breedt, P.W. Cauley, J.J. Hermes

Publications

This study presents observations of two possible substellar survivors of post-main sequence engulfment, currently orbiting white dwarf stars. Infrared and optical spectroscopy of GD 1400 reveal a 9.98 h orbital period, where the benchmark brown dwarf has 𝑀2 = 68 ± 8 MJup, 𝑇eff ≈ 2100 K, and a cooling age under 1 Gyr. A substellar mass in the lower range of allowed values is favoured by the gravitational redshift of the primary. Synthetic brown dwarf spectra are able to reproduce the observed CO bands, but lines below the bandhead are notably overpredicted. The known infrared excess towards PG 0010+281 …


The Analysis Of Radio And X-Ray Energetics Of Fast Radio Bursts, Emily Huerta 2022 University of Nevada, Las Vegas

The Analysis Of Radio And X-Ray Energetics Of Fast Radio Bursts, Emily Huerta

Undergraduate Research Symposium Posters

Here, we analyze the graphs and figures presented in Laha et al. (2022) and compare their slopes to our figures. Laha et al. (2022) includes two graphs, one that shows a comparison between radio fluence vs. x-ray fluence and radio energy vs. x-ray energy. In these graphs, the slopes are anywhere from 3.3e-14 to 2e-5, which are much less than unity. Our figures are consistent with these values, also providing slopes anywhere between the same range. Strong limits on this ratio between radio and x-ray energetics can either support the magnetar progenitor model, or completely dismiss it. Since we found …


Interdisciplinary Convergence To God: A Supplement To The Big Bang & God– An Astro-Theology, Theodore Walker 2022 Southern Methodist University

Interdisciplinary Convergence To God: A Supplement To The Big Bang & God– An Astro-Theology, Theodore Walker

Perkins Faculty Research and Special Events

Here is a December 2022 supplement to the 2015 book—The Big Bang and God: An Astro-Theology wherein an astronomer and a theologian offer a study of interdisciplinary convergences with natural theology both in the scientific researches of Sir Fred Hoyle and in the philosophical researches of Charles Hartshorne and Alfred North Whitehead, thereby illustrating a constructive postmodern trend (New York: Palgrave Macmillan, 2015) by Theodore Walker Jr. and Chandra Wickramasinghe, with editing and co-authoring by Alexander Vishio.

Biology, astronomy, astrobiology, cosmology, and theology converge when the word “God” refers to “that than which none greater can conceived” (St. Anselm), …


The Evolution Of X-Ray Binaries And Their Accretion States, Lacey A. West 2022 University of Arkansas, Fayetteville

The Evolution Of X-Ray Binaries And Their Accretion States, Lacey A. West

Graduate Theses and Dissertations

X-ray binary systems (XRBs) consist of a compact object component (e.g., black hole or neutron star) that accretes matter from a companion star. Although the extent to which XRBs contributed to the early heating of the intergalactic medium is still under investigation, it is estimated that XRBs dominated the X-ray radiation field before the reionization epoch. The study of XRB emission is therefore crucial to our understanding of the very early universe. Furthermore, studying the abundance and radial distribution of each XRB type within a galaxy can be revealing of the host galaxy’s local properties, structure, and evolution. XRB spectra …


Deciphering Surfaces Of Trans-Neptunian And Kuiper Belt Objects Using Radiative Scattering Models, Machine Learning, And Laboratory Experiments, Al Emran 2022 University of Arkansas, Fayetteville

Deciphering Surfaces Of Trans-Neptunian And Kuiper Belt Objects Using Radiative Scattering Models, Machine Learning, And Laboratory Experiments, Al Emran

Graduate Theses and Dissertations

Decoding surface-atmospheric interactions and volatile transport mechanisms on trans-Neptunian objects (TNOs) and Kuiper Belt objects (KBOs) involves an in-depth understanding of physical and thermal properties and spatial distribution of surface constituents – nitrogen (N2), methane (CH4), carbon monoxide (CO), and water (H2O) ices. This thesis implements a combination of radiative scattering models, machine learning techniques, and laboratory experiments to investigate the uncertainties in grain size estimation of ices, the spatial distribution of surface compositions on Pluto, and the thermal properties of volatiles found on TNOs and KBOs. Radiative scattering models (Mie theory and Hapke approximations) were used to compare single …


First-Principles Study Of Doping Effects On Ferroelectricity And On Rashba Spin Splitting, Zegnet Yimer Muhammed 2022 University of Arkansas, Fayetteville

First-Principles Study Of Doping Effects On Ferroelectricity And On Rashba Spin Splitting, Zegnet Yimer Muhammed

Graduate Theses and Dissertations

In this dissertation, we have thoroughly studied the effect of chemical and charge dopingon ferroelectrics (PbTiO3 and BaTiO3) and Rashba type semiconductor (BiTeI). In the first project, We investigate the polar instability and soft modes in electron-doped PbTiO3 using linear-response density functional calculations. Because, metallicity and ferroelectric-like polar distortion are mutually non-compatible, and their coexistence in the same system is an intriguing subject of fundamental interest in the field of structure phase transition. However, it is unclear what mechanism may extend the limit of metallicity that allows polar distortion. We find that ferroelectric instability can remarkably sustain up to an …


A Method For Exploring The Habitability Of Earth-Like Exoplanets: Applications To Tess Objects Of Interest 203 B, 256 B, And 700 D, Paul Bonney 2022 University of Arkansas, Fayetteville

A Method For Exploring The Habitability Of Earth-Like Exoplanets: Applications To Tess Objects Of Interest 203 B, 256 B, And 700 D, Paul Bonney

Graduate Theses and Dissertations

The Transiting Exoplanet Survey Satellite (TESS) has and is continuing to discover a multitude of potentially habitable planet candidates. As more planets are detected and confirmed, it becomes increasingly important to strategically search for signs of habitability with which to differentiate and prioritize them for further observation, in particular with the James Webb Space Telescope (JWST). To facilitate this, I have created a method for prioritizing TESS planet candidates based on parameters derived from their light curves and have applied the method to the TESS Candidate Target List (CTL). This data set uses preliminary fits to transit modeling which can …


Digital Commons powered by bepress