Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

7,198 Full-Text Articles 15,588 Authors 1,706,053 Downloads 251 Institutions

All Articles in Biochemistry

Faceted Search

7,198 full-text articles. Page 275 of 278.

Nmr Assignments Of A Stable Processing Intermediate Of Human Frataxin, Kalyan C. Kondapalli, Krisztina Z. Bencze, Eric Dizin, James A. Cowan, Timothy L. Stemmler 2010 Wayne State University

Nmr Assignments Of A Stable Processing Intermediate Of Human Frataxin, Kalyan C. Kondapalli, Krisztina Z. Bencze, Eric Dizin, James A. Cowan, Timothy L. Stemmler

Biochemistry and Molecular Biology Faculty Publications

Frataxin, a nuclear encoded protein targeted to the mitochondrial matrix, has recently been implicated as an iron chaperone that delivers ferrous iron to the iron-sulfur assembly enzyme IscU. During transport across the mitochondrial membrane, the N-terminal mitochondrial targeting sequence of frataxin is cleaved in a two-step process to produce the mature protein found in the matrix, however N-terminal extended forms of the protein have also been observed in vivo. The recent structural characterization studies of the human frataxin ortholog were performed on a truncated variant of the protein. Here we report the NMR spectral assignment of an extended form of …


Antispasmodic And Vasodilator Activities Of Morinda Citrifolia Root Extract Are Mediated Through Blockade Of Voltage Dependent Calcium Channels, Anwarul Hassan Gilani, Saf-ur-Rehman Mandukhail, Javeid Iqbal, Masoom Yasinzai, Nauman Aziz, Aslam Khan, Najeeb-ur-Rehman 2010 Aga Khan University

Antispasmodic And Vasodilator Activities Of Morinda Citrifolia Root Extract Are Mediated Through Blockade Of Voltage Dependent Calcium Channels, Anwarul Hassan Gilani, Saf-Ur-Rehman Mandukhail, Javeid Iqbal, Masoom Yasinzai, Nauman Aziz, Aslam Khan, Najeeb-Ur-Rehman

Department of Biological & Biomedical Sciences

Background: Morinda citrifolia (Noni) is an edible plant with wide range of medicinal uses. It occurs exclusively in tropical climate zone from India through Southeast Asia and Australia to Eastern Polynesia and Hawaii. The objective of this study was to explore the possible mode(s) of action for its antispasmodic, vasodilator and cardio-suppressant effects to rationalize its medicinal use in gut and cardiovascular disorders. Methods: Isolated tissue preparations such as, rabbit jejunum, rat and rabbit aorta and guinea pig atria were used to test the antispasmodic and cardiovascular relaxant effects and the possible mode of action(s) of the 70% aqueous-ethanolic extract …


Biochemical Characterization Of Human Mismatch Recognition Proteins Mutsα And Mutsβ, Lei Tian 2010 University of Kentucky

Biochemical Characterization Of Human Mismatch Recognition Proteins Mutsα And Mutsβ, Lei Tian

University of Kentucky Doctoral Dissertations

The integrity of an organism's genome depends on the fidelity of DNA replication and the efficiency of DNA repair. The DNA mismatch repair (MMR) system, which is highly conserved from prokaryotes to eukaryotes, plays an important role in maintaining genome stability by correcting base-base mismatches and insertion/deletion (ID) mispairs generated during DNA replication and other DNA transactions. Mismatch recognition is a critical step in MMR. Two mismatch recognition proteins, MutSα (MSH2-MSH6 heterodimer) and MutSβ (MSH2-MSH3 heterodimer), have been identified in eukaryotic cells. MutSα and MutSβ have partially overlapping functions, with MutSα recognizing primarily base-base mismatches and 1-2 nt ID mispairs …


Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons 2010 University of Kentucky

Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons

University of Kentucky Doctoral Dissertations

The focus of this dissertation is centered on the mass spectral analysis of lipids and changes occurring in keeping with the concept of homeoviscous adaptation [1]. Homeoviscous adaptation is the process of modification of membrane lipids in response to environmental stimuli [1]. Dissertation investigations applied this concept to prokaryotic and eukaryotic organisms, and expanded the perception of environmental factors from exogenous organic solvents to intracellular environment.

The field of lipidomics deals with the analysis of phospholipid and fatty acid components of membranes the changes that occur due to environmental stimuli and their biological significance [2-6]. The high sensitivity of mass …


Enzymology And Medicinal Chemistry Of N5-Carboxyaminoimidazole Ribonucleotide Synthetase : A Novel Antibacterial Target, Hanumantharao Paritala 2010 Wayne State University

Enzymology And Medicinal Chemistry Of N5-Carboxyaminoimidazole Ribonucleotide Synthetase : A Novel Antibacterial Target, Hanumantharao Paritala

Wayne State University Dissertations

N5-Carboxyaminoimidazole ribonucleotide synthetase (N5-CAIR synthetase), a key enzyme in microbial de novo purine biosynthesis, catalyzes the conversion of aminoimidazole ribonucleotide (AIR) to N5-CAIR. To date, this enzyme has been observed only in microorganisms, and thus, it represents an ideal target for antimicrobial drug development. Here we report structural and functional studies on the Aspergillus clavatus N5-CAIR synthetase and identification of inhibitors for the enzyme. In collaboration with Dr. Hazel Holden of the University of Wisconsin, the three-dimensional structure of Aspergillus clavatus N5-CAIR synthetase was solved in the presence of either Mg2ATP or MgADP and AIR. These structures, determined to 2.1 …


Polyomavirus Enhancer Activator 3 (Pea3), A Member Of The Ets Family Of Transcription Factors, Is A Transcriptional Activator Of Notch-1 And Notch-4 In Breast Cancer: An Opportunity For Novel Combinational Therapy, Anthony George Clementz 2010 Loyola University Chicago

Polyomavirus Enhancer Activator 3 (Pea3), A Member Of The Ets Family Of Transcription Factors, Is A Transcriptional Activator Of Notch-1 And Notch-4 In Breast Cancer: An Opportunity For Novel Combinational Therapy, Anthony George Clementz

Dissertations

Women diagnosed with triple-negative breast cancer have the worst overall prognosis and frequently present with metastatic tumors. To date, there are no targeted therapies available to combat this aggressive form of breast cancer due to the lack of expression of well-known targets such as ER-alpha, PR, or HER2/neu. Therefore, there is an immediate need to identify novel targets that are responsible for the proliferation, survival, and invasive phenotype. Notch-1 and Notch-4, both potent breast oncogenes, are overexpressed in triple-negative breast cancers-associated with the poorest overall survival. PEA3 (polyomavirus enhancer activator 3), a member of the Ets family of transcription factors, …


New Cyclophanes As Supramolecular Scaffolds: The Synthesis Of Tribenzo-1,4,7-Triazacyclononatriene., Andria M. Panagopoulos 2010 Loyola University Chicago

New Cyclophanes As Supramolecular Scaffolds: The Synthesis Of Tribenzo-1,4,7-Triazacyclononatriene., Andria M. Panagopoulos

Dissertations

Supramolecular chemistry involves the formation of complex molecular entities that have the capacity to participate in specific molecular recognition of guest molecules. A commonly employed scaffold in supramolecular chemistry is the trimeric crown-shaped molecule cyclotriveratrylene (CTV). CTV has been studied extensively for its capability of binding a number of smaller organic and organometallic guests within its bowl-shaped cleft and has been used as a building block enabling the construction of more complex cryptophanes. The goal of this research is the synthesis and characterization of a novel cyclophane, tribenzo-1,4,7-triazacyclononene and derivatives thereof. These new cyclophanes should have greater versatility than the …


Structure-Function Relationship Studies Of The Udp-Glucose Pyrophosphorylase From Escherichia Coli, Agnieszka Maria Orlof 2010 Loyola University Chicago

Structure-Function Relationship Studies Of The Udp-Glucose Pyrophosphorylase From Escherichia Coli, Agnieszka Maria Orlof

Master's Theses

UDP-Glucose Pyrophosphorylase (UDP-Glc PPase) is a key enzyme of the carbohydrate metabolic pathway widely used among prokaryotes and eukaryotes. In plants, UDP-Glc PPase is necessary for sucrose synthesis while mammals utilize this enzyme for the production of glycogen. A bacterium such as Escherichia coli uses UDP-Glc PPase for biosynthesis of the lipopolysscharide core which forms a cell wall.

This study focused on UDP-Glc PPase from Escherichia coli which is encoded by both galU and galF genes. The first part of this project investigated amino acids that could play an important role in the function of UDP Glc PPase (GalU). Based …


Millimeter-Scale Contact Printing Of Aqueous Solutions Using A Stamp Made Out Of Paper And Tape, Chao-Min Cheng, Aaron D. Mazzeo, Jinlong Gong, Andres W. Martinez, Scott T. Phillips, Nina Jain, George M. Whitesides 2010 Harvard University

Millimeter-Scale Contact Printing Of Aqueous Solutions Using A Stamp Made Out Of Paper And Tape, Chao-Min Cheng, Aaron D. Mazzeo, Jinlong Gong, Andres W. Martinez, Scott T. Phillips, Nina Jain, George M. Whitesides

Chemistry and Biochemistry

This communication describes a simple method for printing aqueous solutions with millimeter-scale patterns on a variety of substrates using an easily fabricated, paper-based microfluidic device (a paper-based ―stamp‖) as a contact printing device. The device is made from inexpensive materials, and it is easily assembled by hand; this method is thus accessible to a wide range of laboratories and budgets. A single device was used to print over 2500 spots in less than three minutes at a density of 16 spots per square centimetre. This method provides a new tool to pattern biochemicals—reagents, antigens, proteins, and DNA—on planar substrates. The …


Electrochemical Sensing In Paper-Based Microfluidic Devices, Zhihong Nie, Christian A. Nijhuis, Jinlong Gong, Xin Chen, Alexander Kumachev, Andres W. Martinez, Max Narovlyansky, George M. Whitesides 2010 Harvard University

Electrochemical Sensing In Paper-Based Microfluidic Devices, Zhihong Nie, Christian A. Nijhuis, Jinlong Gong, Xin Chen, Alexander Kumachev, Andres W. Martinez, Max Narovlyansky, George M. Whitesides

Chemistry and Biochemistry

This paper describes the fabrication and the performance of microfluidic paper-based electrochemical sensing devices (we call the microfluidic paper-based electrochemical devices, μPEDs). The μPEDs comprise paper-based microfluidic channels patterned by photolithography or wax printing, and electrodes screen-printed from conducting inks (e.g., carbon or Ag/AgCl). We demonstrated that the μPEDs are capable of quantifying the concentrations of various analytes (e.g., heavy-metal ions and glucose) in aqueous solutions. This low-cost analytical device should be useful for applications in public health, environmental monitoring, and the developing world.


Programmable Diagnostic Devices Made From Paper And Tape, Andres W. Martinez, Scott T. Phillips, Zhihong Nie, Chao-Min Cheng, Emanuel Carrilho, Benjamin J. Wiley, George M. Whitesides 2010 Harvard University

Programmable Diagnostic Devices Made From Paper And Tape, Andres W. Martinez, Scott T. Phillips, Zhihong Nie, Chao-Min Cheng, Emanuel Carrilho, Benjamin J. Wiley, George M. Whitesides

Chemistry and Biochemistry

This paper describes three-dimensional microfluidic paper-based analytical devices (3-D μPADs) that can be programmed (postfabrication) by the user to generate multiple patterns of flow through them. These devices are programmed by pressing single-use ‘on’ buttons, using a stylus or a ballpoint pen. Pressing a button closes a small space (gap) between two vertically aligned microfluidic channels, and allows fluids to wick from one channel to the other. These devices are simple to fabricate, and are made entirely out of paper and double-sided adhesive tape. Programmable devices expand the capabilities of μPADs and provide a simple method for controlling the movement …


Nip/Duoxa Is Essential For Drosophila Embryonic Development And Regulates Oxidative Stress Response., Xiaojun Xie, Jack Hu, Xiping Liu, Hanjuan Qin, Anthony Percival-Smith, Yong Rao, Shawn S C Li 2010 Western University

Nip/Duoxa Is Essential For Drosophila Embryonic Development And Regulates Oxidative Stress Response., Xiaojun Xie, Jack Hu, Xiping Liu, Hanjuan Qin, Anthony Percival-Smith, Yong Rao, Shawn S C Li

Biochemistry Publications

NIP/DuoxA, originally cloned as a protein capable of binding to the cell fate determinant Numb in Drosophila, was recently identified as a modulator of reactive oxygen species (ROS) production in mammalian systems. Despite biochemical and cellular studies that link NIP/DuoxA to the generation of ROS through the dual oxidase (Duox) enzyme, the in vivo function of NIP/DuoxA has not been characterized to date. Here we report a genetic and functional characterization of nip in Drosophila melanogaster. We show that nip is essential for Drosophila development as nip null mutants die at the 1(st) larval instar. Expression of UAS-nip, but not …


Identification And Characterization Of Small Compound Inhibitors Of Human Fatp2, Angel Sandoval, Aalap Chokshi, Elliot D. Jesch, Paul N. Black, Concetta C. DiRusso 2010 University of Nebraska-Lincoln

Identification And Characterization Of Small Compound Inhibitors Of Human Fatp2, Angel Sandoval, Aalap Chokshi, Elliot D. Jesch, Paul N. Black, Concetta C. Dirusso

Department of Biochemistry: Faculty Publications

Fatty acid transport proteins (FATPs) are bifunctional proteins, which transport long chain fatty acids into cells and activate very long chain fatty acids by esterification with coenzyme A. In an effort to understand the linkage between cellular fatty acid transport and the pathology associated with excessive accumulation of exogenous fatty acids, we targeted FATP-mediated fatty acid transport in a high throughput screen of more than 100,000 small diverse chemical compounds in yeast expressing human FATP2 (hsFATP2). Compounds were selected for their ability to depress the transport of the fluorescent long chain fatty acid analogue, C1-BODIPY-C12. Among …


Structural Basis For Feedback And Pharmacological Inhibition Of Saccharomyces Cerevisiae Glutamate Cysteine Ligase, Ekaterina I Biterova, Joseph J. Barycki 2010 University of Nebraska - Lincoln

Structural Basis For Feedback And Pharmacological Inhibition Of Saccharomyces Cerevisiae Glutamate Cysteine Ligase, Ekaterina I Biterova, Joseph J. Barycki

Department of Biochemistry: Faculty Publications

Structural characterization of glutamate cysteine ligase (GCL), the enzyme that catalyzes the initial, rate-limiting step in glutathione biosynthesis, has revealed many of the molecular details of substrate recognition. To further delineate the mechanistic details of this critical enzyme, we have determined the structures of two inhibited forms of Saccharomyces cerevisiae GCL (ScGCL), which shares significant sequence identity with the human enzyme. In vivo, GCL activity is feedback regulated by glutathione. Examination of the structure of ScGCL-glutathione complex (2.5 A ; R = 19.9%, Rfree = 25.1%) indicates that the inhibitor occupies both the glutamate- and the presumed cysteine- …


Cug Start Codon Generates Thioredoxin/Glutathione Reductase Isoforms In Mouse Testes, Maxim Gerashchenko, Dan Su, Vadim Gladyshev 2010 University of Nebraska-Lincoln

Cug Start Codon Generates Thioredoxin/Glutathione Reductase Isoforms In Mouse Testes, Maxim Gerashchenko, Dan Su, Vadim Gladyshev

Department of Biochemistry: Faculty Publications

Mammalian cytosolic and mitochondrial thioredoxin reductases are essential selenocysteine-containing enzymes that control thioredoxin functions. Thioredoxin/glutathione reductase (TGR) is a third member of this enzyme family. It has an additional glutaredoxin domain and shows highest expression in testes. Herein, we found that human and several other mammalian TGR genes lack any AUG codons that could function in translation initiation. Although mouse and rat TGRs have such codons, we detected protein sequences upstream of them by immunoblot assays and direct proteomic analyses. Further gene engineering and expression analyses demonstrated that a CUG codon, located upstream of the sequences previously thought to initiate …


Methanogenesis By Methanosarcina Acetivorans Involves Two Structurally And Functionally Distinct Classes Of Heterodisulfide Reductase, Nicole R. Buan, William W. Metcalf 2010 University of Nebraska-Lincoln

Methanogenesis By Methanosarcina Acetivorans Involves Two Structurally And Functionally Distinct Classes Of Heterodisulfide Reductase, Nicole R. Buan, William W. Metcalf

Department of Biochemistry: Faculty Publications

Biochemical studies have revealed two distinct classes of Coenzyme B-Coenzyme M heterodisulfide (CoB-S-S-CoM) reductase (Hdr), a key enzyme required for anaerobic respiration in methaneproducing archaea. A cytoplasmic HdrABC enzyme complex is found in most methanogens, whereas a membrane-bound HdrED complex is found exclusively in members of the order Methanosarcinales. Unexpectedly, genomic data indicate that multiple copies of both Hdr classes are found in all sequenced Methanosarcinales genomes. The Methanosarcina acetivorans hdrED1 operon is constitutively expressed and required for viability under all growth conditions examined, consistent with HdrED being the primary Hdr. HdrABC appears to be specifically involved in methylotrophic …


The Role Of Coa2 In Hemylation Of Yeast Cox1 Revealed By Its Genetic Interaction With Cox10, Megan Bestwick, Oleh Khalimonchuk, Fabien Pierrel, Dennis R. Winge 2010 University of Utah Health Sciences Center

The Role Of Coa2 In Hemylation Of Yeast Cox1 Revealed By Its Genetic Interaction With Cox10, Megan Bestwick, Oleh Khalimonchuk, Fabien Pierrel, Dennis R. Winge

Department of Biochemistry: Faculty Publications

Saccharomyces cerevisiae cells lacking the cytochrome c oxidase (CcO) assembly factor Coa2 are impaired in Cox1 maturation and exhibit a rapid degradation of newly synthesized Cox1. The respiratory deficiency of coa2 Δ cells is suppressed either by the presence of a mutant allele of the Cox10 farnesyl transferase involved in heme a biosynthesis or through impaired proteolysis by the disruption of the mitochondrial Oma1 protease. Cox10 with an N196K substitution functions as a robust gain-of-function suppressor of the respiratory deficiency of coa2 Δ cells but lacks suppressor activity for two other CcO assembly mutant strains, the coa1 Δ and shy1 …


Formation Of The Redox Cofactor Centers During Cox1 Maturation In Yeast Cytochrome Oxidase, Oleh Khalimonchuk, Megan Bestwick, Brigitte Meunier, Talina C. Watts, Dennis R. Winge 2010 University of Nebraska-Lincoln

Formation Of The Redox Cofactor Centers During Cox1 Maturation In Yeast Cytochrome Oxidase, Oleh Khalimonchuk, Megan Bestwick, Brigitte Meunier, Talina C. Watts, Dennis R. Winge

Department of Biochemistry: Faculty Publications

The biogenesis of cytochrome c oxidase initiates with synthesis and maturation of the mitochondrionencoded Cox1 subunit prior to the addition of other subunits. Cox1 contains redox cofactors, including the low-spin heme a center and the heterobimetallic heme a3:CuB center. We sought to identify the step in the maturation of Cox1 in which the redox cofactor centers are assembled. Newly synthesized Cox1 is incorporated within one early assembly intermediate containing Mss51 in Saccharomyces cerevisiae. Subsequent Cox1 maturation involves the progression to downstream assembly intermediates involving Coa1 and Shy1. We show that the two heme a cofactor sites …


Regulation Of Sealing Ring Formation By L-Plastin And Cortactin In Osteoclasts, Tao Ma, Kavitha Sadashivalah, Nandakumar Madayiputhiya, Meenakshi A. Chellaia 2010 Dental School, University of Maryland

Regulation Of Sealing Ring Formation By L-Plastin And Cortactin In Osteoclasts, Tao Ma, Kavitha Sadashivalah, Nandakumar Madayiputhiya, Meenakshi A. Chellaia

Department of Biochemistry: Faculty Publications

The aim of this study is to identify the exact mechanism(s) by which cytoskeletal structures are modulated during bone resorption. In this study, we have shown the possible role of different actin-binding and signaling proteins in the regulation of sealing ring formation. Our analyses have demonstrated a significant increase in cortactin and a corresponding decrease in L-plastin protein levels in osteoclasts subjected to bone resorption for 18 h in the presence of RANKL, M-CSF, and native bone particles. Time-dependent changes in the localization of L-plastin (in actin aggregates) and cortactin (in the sealing ring) suggest that these proteins may be …


Morphological Changes And Immunohistochemical Expression Of Rage And Its Ligands In The Sciatic Nerve Of Hyperglycemic Pig (Sus Scrofa), Judyta K. Juranek, Alexey Aleshin, Eileen M. Rattigan, Lynne Johnson, Wu Qu, Fei Song, Radha Ananthakrishnan, Nosirudeen Quadri, Shi Du Yan, Ravichandran Ramasamy, Ann Marie Schmidt, Matthew S. Geddis 2010 Columbia University

Morphological Changes And Immunohistochemical Expression Of Rage And Its Ligands In The Sciatic Nerve Of Hyperglycemic Pig (Sus Scrofa), Judyta K. Juranek, Alexey Aleshin, Eileen M. Rattigan, Lynne Johnson, Wu Qu, Fei Song, Radha Ananthakrishnan, Nosirudeen Quadri, Shi Du Yan, Ravichandran Ramasamy, Ann Marie Schmidt, Matthew S. Geddis

Publications and Research

The aim of our project was to study the effect of streptozotocin (STZ)—induced hyperglycemia on sciatic nerve morphology, blood plasma markers and immunohistochemical expression of RAGE (the Receptor for Advanced Glycation End-products), and its ligands—S100B and Carboxymethyl Lysine (CML)-advanced glycation endproduct (AGE) in the laboratory pig. Six months after STZ—injections, blood plasma measurements, morphometric analysis of sciatic nerve fiber density, immunofluorescent distribution of potential molecular neuropathy contributors, ELISA measurement of plasma AGE level and HPLC analysis of sciatic nerve levels of one of the pre-AGE and the glycolysis intermediate products—methyl-glyoxal (MG) were performed. The results of our study revealed that …


Digital Commons powered by bepress