Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Quantum Physics

Contributions Of Tunneling In 8Π-6Π Electrocyclic Cascade Reactions Of Bicyclo[4.2.0]Octa-2,4-Diene Moieties, Ishika Jain, Claire Castro, William L. Karney Nov 2023

Contributions Of Tunneling In 8Π-6Π Electrocyclic Cascade Reactions Of Bicyclo[4.2.0]Octa-2,4-Diene Moieties, Ishika Jain, Claire Castro, William L. Karney

Featured Student Work

Six-electron electrocyclic reactions usually require relatively high temperatures; however recent research has shown that such reactions can occur at significantly lower temperatures in biosynthetic and biomimetic pathways. Pathways resulting in bicyclo[4.2.0]octa-2,4-diene moieties arise from thermally allowed 8π-6π electrocyclization cascade reactions of 1,3,5,7-octatetraenes, as in the biosynthesis of endiandric acids, elysiapyrones, and numerous other natural products. We report multidimensional tunneling calculations to explore the possible contribution of heavy-atom tunneling (e.g. by carbon) to biosynthetic pathways and biomimetic syntheses, and thus to provide a more complete picture of biochemical kinetics. M06-2X/cc-pVDZ calculations on the 8π-6π cascade cyclizations of methylated octatetraene model systems …


Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe Jan 2016

Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe

Faculty Journal Articles

The nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional

hydrogen-bond networks, rather than cyclic two-dimensional topologies. Here we report measurements of splitting patterns in rotational transitions of the water hexamer prism, and we used quantum simulations to show that they result from geared and antigeared rotations of a pair of water molecules. Unlike previously reported …