Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Quantum Physics

Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz Jul 2019

Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz

Chemistry and Biochemistry Faculty Research

Cold collisions of light molecules are often dominated by a single partial wave resonance. For the rotational quenching of HD (v=1, j=2) by collisions with ground state para-H2, the process is dominated by a single L=2 partial wave resonance centered around 0.1 K. Here, we show that this resonance can be switched on or off simply by appropriate alignment of the HD rotational angular momentum relative to the initial velocity vector, thereby enabling complete control of the collision outcome.


Phantoms In Science: Nietzsche's Nonobjectivity On Planck's Quanta, Donald Richard Dickerson Iii May 2019

Phantoms In Science: Nietzsche's Nonobjectivity On Planck's Quanta, Donald Richard Dickerson Iii

Undergraduate Theses

What does Maxwell Planck's concept of phantomness suggest about the epistemological basis of science and how might a Nietzschean critique reveal solution to the weaknesses revealed? With his solution to Kirchoff's equation, Maxwell Planck launched the paradigm of quantum physics. This same solution undermined much of current understandings of science versus pseudoscience. Using Nietzsche's perspectivism and other philosophical critiques, Planck's answer to blackbody radiation is used to highlight the troubles with phantom problems in science and how to try to direct science towards a more holistic and complete scientific approach.